Skip to main content

The Seeding Algorithm for Spherical k-Means Clustering with Penalties

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11640))

Included in the following conference series:

Abstract

Spherical k-means clustering is a generalization of k-means problem which is NP-hard and has widely applications in data mining. It aims to partition a collection of given data with unit length into k sets so as to minimize the within-cluster sum of cosine dissimilarity. In this paper, we introduce the spherical k-means clustering with penalties and give a \(2\max \{2,M\}(1+M)(\ln k+2)\)-approximate algorithm, where M is the ratio of the maximal and the minimal penalty values of the given data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Awasthi, P., Charikar, M., Krishnaswamy, R., Sinop, A.: The hardness of approximation of Euclidean \(k\)-means, arXiv preprint arXiv:1502.03316 (2015)

  2. Aloise, D., Deshpande, A., Hansen, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

    Article  Google Scholar 

  3. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for \(k\)-means and Euclidean \(k\)-median by primal-dual algorithms. In: Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 61–72 (2017)

    Google Scholar 

  4. Arthur, D., Vassilvitskii, S.: \(k\)-means++: the advantages of careful seeding. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035 (2007)

    Google Scholar 

  5. Blömer, J., Brauer, S., Bujna, K.: A theoretical analysis of the fuzzy \(k\)-means problem. In: Proceedings of the 16th IEEE International Conference on Data Mining (ICDM), pp. 805–810 (2017)

    Google Scholar 

  6. Blömer, J., Lammersen, C., Schmidt, M., Sohler, C.: Theoretical analysis of the k-means algorithm – a survey. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 81–116. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6_3

    Chapter  Google Scholar 

  7. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for \(k\)-means and \(k\)-median in Euclidean and minor-free metrics. SIAM J. Comput. 48(2), 644–667 (2019)

    Article  MathSciNet  Google Scholar 

  8. Drineas, P., Frieze, A., Kannan, R., Vempala, V.: Clustering large graphs via the singular value decomposition. Mach. Learn. 56(1–3), 9–33 (2004)

    Article  Google Scholar 

  9. Dhillon, I., Modha, D.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42(1–2), 143–175 (2001)

    Article  Google Scholar 

  10. Endo, Y., Miyamoto, S.: Spherical k-means++ clustering. In: Torra, V., Narukawa, Y. (eds.) MDAI 2015. LNCS (LNAI), vol. 9321, pp. 103–114. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23240-9_9

    Chapter  Google Scholar 

  11. Gupta, S., Kumar, R., Lu, K., Moseley, B., Vassilvitskii, S.: Local search methods for \(k\)-means with outliers. Proc. VLDB Endow. 10(7), 757–768 (2017)

    Article  Google Scholar 

  12. Hornik, K., Feinerer, I., Kober, M., Buchata, M.: Spherical \(k\)-means clustering. J. Stat. Softw. 50(10), 1–22 (2015)

    Google Scholar 

  13. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverma, R.: A local search approximation algorithm for \(k\)-means clustering. Comput. Geom. 28(2–3), 89–112 (2004)

    Article  MathSciNet  Google Scholar 

  14. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. 28(2), 129–137 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Li, M., Xu, D., Yue, J., Zhang, D., Zhang, P.: The seeding algorithm for \(k\)-means with penalties. J. Comb. Optim. (under review)

    Google Scholar 

  16. Li, M., Xu, D., Zhang, D., Zou, J.: The seeding algorithms for spherical \(k\)-means clustering. J. Global Optim. 1–14 (2019)

    Google Scholar 

  17. Moriya, T., Roth, H., Nakamura, S., Oda, H., Kai, N., Oda, M.: Unsupervised pathology image segmentation using representation learning with spherical \(k\)-means. In: Digital Pathology, p. 36 (2018)

    Google Scholar 

  18. Tunali, V., Bilgin, T., Camurcu, A.: An improved clustering algorithm for text mining: multi-cluster spherical \(k\)-means. Int. Arab J. Inf. Technol. 13(1), 12–19 (2016)

    Google Scholar 

  19. Xu, J., Han, J., Xiong, K., Nie F.: Robust and sparse fuzzy \(k\)-means clustering. In: Proceedings 25th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2224–2230 (2016)

    Google Scholar 

  20. Xu, D., Xu, Y., Zhang, D.: A survey on algorithm for \(k\)-means and its variants. Oper. Res. Trans. 21, 101–109 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The first and second authors are supported by National Natural Science Foundation of China (No. 11531014). The third author is supported by National Natural Science Foundation of China (No. 61772005) and Natural Science Foundation of Fujian Province (No. 2017J01753). The forth author is supported by Higher Educational Science and Technology Program of Shandong Province (No. J17KA171). The fifth author is supported by National Natural Science Foundation of China (No. 11871081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longkun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, S., Xu, D., Guo, L., Li, M., Zhang, D. (2019). The Seeding Algorithm for Spherical k-Means Clustering with Penalties. In: Du, DZ., Li, L., Sun, X., Zhang, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2019. Lecture Notes in Computer Science(), vol 11640. Springer, Cham. https://doi.org/10.1007/978-3-030-27195-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27195-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27194-7

  • Online ISBN: 978-3-030-27195-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics