Skip to main content

Approximation Algorithm for the Correlation Clustering Problem with Non-uniform Hard Constrained Cluster Sizes

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11640))

Included in the following conference series:

Abstract

This paper considers the correlation clustering problem with non-uniform hard constrained cluster sizes, which is a generalization of correlation clustering problem. In this problem, we are given a positive integer \(U_v\) for each vertex v, and require \(|C|\le \min _{v\in C}U_v\) for any cluster C. We provide a (2, 4)-bicriteria approximation algorithm for this problem. Namely, the solution returned by the algorithm has the cost that is at most 4 times the optimum, and for each cluster C in the solution, we have \(|C|\le 2\min _{v\in C}U_v\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amit, N.: The bicluster graph editing problem. Diss, Tel Aviv University (2004)

    Google Scholar 

  2. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Zuylen, A.V.: Improved approximation algorithms for bipartite correlation clustering. SIAM J. Comput. 41(5), 1110–1121 (2012)

    Article  MathSciNet  Google Scholar 

  3. Achtert, E., B\(\ddot{o}\)hm, C., David, J., Kr\(\ddot{o}\)ger, P., Zimek, A.: Global correlation clustering based on the hough transform. Stat. Anal. Data Min. 1(3), 111–127 (2010)

    Article  MathSciNet  Google Scholar 

  4. Ahn, K.J., Cormode, G., Guha, S., Mcgregor, A., Wirth, A.: Correlation clustering in data streams. In: Proceedings of the 32th International Conference on International Conference on Machine Learning (ICML), pp. 2237–2246 (2015)

    Google Scholar 

  5. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM, 55(5), Article No. 23 (2008)

    Article  MathSciNet  Google Scholar 

  6. Arthur, D., Vassilvitskii, S.: k-Means++: the advantages of careful seeding. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035 (2007)

    Google Scholar 

  7. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for \(k\)-means and Euclidean \(k\)-median by primal-dual algorithms. In: Proceedings of the 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 61–72 (2017)

    Google Scholar 

  8. Bonchi, F.: Overlapping correlation clustering. Knowl. Inf. Syst. 35(1), 1–32 (2013)

    Article  Google Scholar 

  9. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  Google Scholar 

  10. Byrka, J., Fleszar, K., Rybicki, B., Spoerhase, J.: Bi-factor approximation algorithms for hard capacitated \(k\)-median problems. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 722–736 (2015)

    Google Scholar 

  11. Braverman, V., Lang, H., Levin, K., Monemizadeh, M.: Clustering problems on sliding windows. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1374–1390 (2016)

    Google Scholar 

  12. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71(3), 360–383 (2005)

    Article  MathSciNet  Google Scholar 

  13. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm for correlationclustering on complete and complete k-partite graphs. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC), pp. 219–228 (2015)

    Google Scholar 

  14. Demaine, E., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theoret. Comput. Sci. 361(2), 172–187 (2006)

    Article  MathSciNet  Google Scholar 

  15. Frieze, A., Jerrum, M.: Improved approximation algorithms for maxk-cut and max bisection. Algorithmica 18(1), 67–81 (1997)

    Article  MathSciNet  Google Scholar 

  16. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  17. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1167–1176 (2006)

    Google Scholar 

  18. Li, S.: On uniform capacitated \(k\)-median beyond the natural LP relaxation. ACM Trans. Algorithms, 13(2), Article No. 22 (2017)

    Google Scholar 

  19. Li, M., Xu, D., Zhang, D., Zhang, T.: A streaming algorithm for k-means with approximate coreset. Asia Pac. J. Oper. Res. 36, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  20. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 712–728 (2010)

    Google Scholar 

  21. Mathieu, C., Sankur, O., Schudy, W.: Online correlation clustering. Comput. Stat. 21(2), 211–229 (2010)

    MATH  Google Scholar 

  22. Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes and extended weights bounds. SIAM J. Optim. 25(3), 1857–1872 (2015)

    Article  MathSciNet  Google Scholar 

  23. Puleo, G.J., Milenkovic, O.: Correlation clustering and biclustering with locally bounded errors. IEEE Trans. Inf. Theory 64(6), 4105–4119 (2018)

    Article  MathSciNet  Google Scholar 

  24. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 526–527 (2004)

    Google Scholar 

Download references

Acknowledgements

The second author is supported by National Natural Science Foundation of China (No. 11531014). The third author is supported by Higher Educational Science and Technology Program of Shandong Province (No. J17KA171). The forth author is supported by Natural Science Foundation of China (No. 61433012), Shenzhen Research Grant (KQJSCX2018033017 0311901, JCYJ20180305180840138 and GGFW201707311403 1767), and Shenzhen Discipline Construction Project for Urban Computing and Data Intelligence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, S., Xu, D., Li, M., Wang, Y. (2019). Approximation Algorithm for the Correlation Clustering Problem with Non-uniform Hard Constrained Cluster Sizes. In: Du, DZ., Li, L., Sun, X., Zhang, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2019. Lecture Notes in Computer Science(), vol 11640. Springer, Cham. https://doi.org/10.1007/978-3-030-27195-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27195-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27194-7

  • Online ISBN: 978-3-030-27195-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics