Skip to main content

Screw Displacement and Its Application to the In Vivo Identification of Finger Joint Axes

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11740))

Included in the following conference series:

  • 3357 Accesses

Abstract

This paper provides the exponential derivation of screw displacement and its application in the identification of rotation axes of finger joints. Expressions of screw displacement, including the Rodrigues’ formulae for rotation and general spatial displacement, are derived in details with matrix exponential method in a note form. Then an in vivo approach based on a gyroscope sensor and Arduino board is proposed to determining the joint axes of human finger. The experimental results are feasible comparison with the results obtained through traditional methods in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottema, O., Roth, B.: Theoretical Kinematics. North Holland Publishing Company, Amsterdam (1979)

    MATH  Google Scholar 

  2. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  3. Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  4. Selig, J.M.: Geometric Fundamentals of Robotics, 2nd edn. Springer, New York (2005). https://doi.org/10.1007/b138859

    Book  MATH  Google Scholar 

  5. Uicker, J.J., Sheth, P.N., Ravani, B.: Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  6. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  7. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, New York (2017)

    Google Scholar 

  8. Brockett, R.W.: Robotic manipulators and the product of exponentials formula. In: Fuhrmann, P.A. (ed.) Mathematical Theory of Networks and Systems. LNCIS, vol. 58, pp. 120–129. Springer, Heidelberg (1984). https://doi.org/10.1007/BFb0031048

    Chapter  Google Scholar 

  9. Park, F.C., Eobrow, J.E., Ploen, S.R.: A lie group formulation of robot dynamics. Int. J. Robot. Res. 14(6), 609–618 (1995)

    Article  Google Scholar 

  10. Gallier, J., Xu, D.: Computing exponential of skew-symmetric matrices and logarithms of orthogonal matrices. Int. J. Robot. Autom. 17(4), 1–11 (2002)

    MATH  Google Scholar 

  11. Dai, J.S.: Finite displacement screw operators with embedded Chalses’ motion. J. Mech. Robot. Trans. ASME 44, 041002 (2012)

    Article  Google Scholar 

  12. Dai, J.S.: Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections. Mech. Mach. Theory 92, 144–152 (2015)

    Article  Google Scholar 

  13. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education Inc., Upper Saddle River (2005)

    Google Scholar 

  14. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower pair mechanisms based on matrices. ASME J. Appl. Mech. 77, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  15. Brand, P.W., Hollister, A.M.: Clinical Mechanics of the Hand, 3rd edn. Mosby Inc., St. Louis (1999)

    Google Scholar 

  16. Hollister, A., Giurintano, D.J., Buford, W.L., Myers, L.M., Novick, A.: The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthop. Relat. Res. 320, 188–193 (1995)

    Google Scholar 

  17. Chang, L.Y., Pollard, N.S.: Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint. IEEE Trans. Biomed. Eng. 55(7), 1897–1906 (2008)

    Article  Google Scholar 

  18. Dumont, C., Albus, G., Kubein-Meesenburg, D., Fanghänel, J., Stürmer, K.M., Nägerl, H.: Morphology of the interphalangeal joint surface and its functional relevance. J. Hand Surg. 33(1), 9–18 (2008)

    Article  Google Scholar 

  19. Chao, E.Y.S., An, K.-N., Cooney III, P.W., Linscheid, R.L.: Boimechanics of the Hand: A Basic Research Study. World Scientific Publishing Co., Pte. Ltd., Farrer Road, Singapore (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowu Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Luo, Z., Wei, G., Ren, L. (2019). Screw Displacement and Its Application to the In Vivo Identification of Finger Joint Axes. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11740. Springer, Cham. https://doi.org/10.1007/978-3-030-27526-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27526-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27525-9

  • Online ISBN: 978-3-030-27526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics