Skip to main content

Wrist Motor Function Rehabilitation Training and Evaluation System Based on Human-Computer Interaction

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11741))

Included in the following conference series:

  • 3007 Accesses

Abstract

Based on human-computer interaction, a wrist motor function rehabilitation training and evaluation system is developed for the treatment or improvement of wrist motor dysfunction. Specifically, the joint angle sensor and the MYO wristband are used to realize the perception of the wrist motion on the ROS, the wrist motor function rehabilitation training game with information feedback is designed, and the quantitative evaluation on the wrist motor function is realized. The experimental results demonstrate that in the rehabilitation training session, the online accuracy of wrist motion recognition is 95.2%, and in the evaluation session, the root mean square error of the measured and actual values of the wrist joint angle is less than 5°. The paper works provide the basis for further clinical experiments of the wrist motor function rehabilitation training and evaluation.

Research supported by the National Natural Science Foundation of China (61473265, 61803344), the Post-doctoral Funding in Henan province (001703041) and the Innovation Research Team of Science & Technology of Henan Province (17IRTSTHN013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandian, S., Arya, K.N., Davidson, E.W.R.: Comparison of Brunnstrom movement therapy and motor relearning program in rehabilitation of post-stroke hemiparetic hand: a randomized trial. J. Bodywork Mov. Ther. 16(03), 330–337 (2012)

    Article  Google Scholar 

  2. Serrien, D.J., Strens, L.H., Cassidy, M.J., et al.: Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Exp. Neurol. 190(02), 425–432 (2004)

    Article  Google Scholar 

  3. Tsoupikova, D., Stoykov, N.S., Corrigan, M., et al.: Virtual immersion for post-stroke hand rehabilitation therapy. Ann. Biomed. Eng. 43(02), 467–477 (2015)

    Article  Google Scholar 

  4. Hasani, F.N., MacDermid, J.C., Tang, A., Kho, M.E.: Cross-cultural adaptation and psychometric testing of the Arabic version of the Patient-Rated Wrist Hand Evaluation (PRWHE-A) in Saudi Arabia. J. Hand Ther. 28(4), 412–420 (2015)

    Article  Google Scholar 

  5. Kennedy, S.A., Stoll, L.E., Lauder, A.S.: Human and other mammalian bite injuries of the hand: evaluation and management. J. Am. Acad. Orthop. Surg. 23(1), 47–57 (2015)

    Article  Google Scholar 

  6. Thielbar, K.O., Lord, T.J., Fischer, H.C., et al.: Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J. Neuroengineering Rehabil. 11(01), 171 (2014)

    Article  Google Scholar 

  7. Rivas, J.J., Heyer, P., et al.: Towards incorporating affective computing to virtual rehabilitation; surrogating attributed attention from posture for boosting therapy adaptation. In: International Symposium on Medical Information Processing and Analysis, vol. 92(87), 58–63 (2015)

    Google Scholar 

  8. Heuser, A., Kourtev, H., Hentz, V., et al.: Tele-rehabilitation using the Rutgers Master II glove following Carpal Tunnel Release surgery. In: International Workshop on Virtual Rehabilitation, vol. 15(01), pp. 88–93 (2007)

    Google Scholar 

  9. Sucar, L.E., Orihuela, E.F., Velazquez, R.L., et al.: Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform. IEEE Trans. Neural Syst. Rehabil. Eng. 22(03), 634–643 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, H., Song, Q., Liu, Y. (2019). Wrist Motor Function Rehabilitation Training and Evaluation System Based on Human-Computer Interaction. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11741. Springer, Cham. https://doi.org/10.1007/978-3-030-27532-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27532-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27531-0

  • Online ISBN: 978-3-030-27532-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics