Abstract
In the multi-robot collaborative manufacturing, such as the server motherboard assembly task in the 3C industry, the characteristic of the operating process and the uncertainty of the assembly environment make this problem difficult to be solved in an efficient way. This paper addresses the key points of this problem. Firstly, a series of end effectors for 3C assembly operation is designed. After analyzing precision and scope for different steps in the assembly process, the positioning systems with different precision and scope are designed and are chosen for better performance in different operations. Finally, compliant control is introduced in the inserting process where the positioning system does not perform well to further increase the success rate. Experiments illustrate the superiority of our ideas. Due to its convenience and generality, the present approach can be expected to apply to more general industrial scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lehmann, C., Pellicciari, M., Drust, M., Gunnink, J.W.: Machining with industrial robots: the COMET project approach. In: Neto, P., Moreira, A.P. (eds.) WRSM 2013. CCIS, vol. 371, pp. 27–36. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39223-8_3
Desai, J.P., Kumar, V.: Motion planning for cooperating mobile manipulators. J. Robot. Syst. 16(10), 557–579 (1999)
Khatib, O., Yokoi, K., Chang, K., Ruspini, D., Holmberg, R., Casal, A.: Coordination and decentralized cooperation of multiple mobile manipulators. J. Robot. Syst. 13(11), 755–764 (1996)
Reinhart, G., Zaidan, S.: A generic framework for workpiece-based programming of cooperating industrial robots. In: 2009 International Conference on Mechatronics and Automation, pp. 37–42. IEEE (2009)
Worcester, J., Ani Hsieh, M., Lakaemper, R.: Distributed assembly with online workload balancing and visual error detection and correction. Int. J. Robot. Res. 33(4), 534–546 (2014)
Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton. Robot. 33(3), 323–336 (2012)
Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., Kohler, M.: Aerial robotic construction towards a new field of architectural research. Int. J. Archit. Comput. 10(3), 439–459 (2012)
Heger, F.W., Singh, S.: Robust robotic assembly through contingencies, plan repair and re-planning. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3825–3830. IEEE (2010)
Petersen, K.H., Nagpal, R., Werfel, J.K.: Termes: an autonomous robotic system for three-dimensional collective construction (2011)
Yun, S., Rus, D.: Adaptation to robot failures and shape change in decentralized construction. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2451–2458. IEEE (2010)
Kume, Y., Hirata, Y., Kosuge, K.: Coordinated motion control of multiple mobile manipulators handling a single object without using force/torque sensors. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4077–4082. IEEE (2007)
Li, Z., Ge, S.S., Wang, Z.: Robust adaptive control of coordinated multiple mobile manipulators. Mechatronics 18(5–6), 239–250 (2008)
Dogar, M., Knepper, R.A., Spielberg, A., Choi, C., Christensen, H.I., Rus, D.: Multi-scale assembly with robot teams. Int. J. Robot. Res. 34(13), 1645–1659 (2015)
Collet, A., Martinez, M., Srinivasa, S.S.: The moped framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(10), 1284–1306 (2011)
Ilonen, J., Bohg, J., Kyrki, V.: Fusing visual and tactile sensing for 3-D object reconstruction while grasping. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3547–3554. IEEE (2013)
Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004)
Xu, J., Hou, Z., Wang, W., Xu, B., Zhang, K., Chen, K.: Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks. IEEE Trans. Ind. Inform. 15(3), 1658–1667 (2019)
Zhang, K., Xu, J., Chen, H., Zhao, J., Chen, K.: Jamming analysis and force control for flexible dual peg-in-hole assembly. IEEE Trans. Ind. Electron. 66(3), 1930–1939 (2019)
Funding
This work is supported by National Natural Science Foundation (NNSF) of China under Grant U1713203 and 61803168 and the MOE Key Laboratory of Image Processing and Intelligence Control, Wuhan, China under Grant IPIC2016-05.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, J., Lei, Y., Luo, J., Wu, Y., Zhang, HT. (2019). Multi-robot Collaborative Assembly Research for 3C Manufacturing–Taking Server Motherboard Assembly Task as an Example. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-27535-8_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27534-1
Online ISBN: 978-3-030-27535-8
eBook Packages: Computer ScienceComputer Science (R0)