Skip to main content

Robust Adaptive Force Tracking Impedance Control for Robotic Capturing of Unknown Objects

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11742))

Included in the following conference series:

Abstract

The manipulation for space known objects has been studied extensively, however, the case for unknown objects still needs further investigation because there is little information to assist measurement and manipulation. This paper proposes a robust adaptive force tracking impedance controller for robotic capturing of space unknown objects, which has a great adaptability to the environmental parameters of the objects, a force tracking capability of capturing different types of space objects, and robustness to uncertainties. First, the position control based impedance control scheme is given. Second, an environmental parameters adaptive law is designed to estimate the environmental location and the stiffness of the grasped object. Third, by using the nonlinear high-gain tracking differentiator (HGTD) and linear extended state observer (LESO), a robust adaptive dynamic surface position controller for a space robot is proposed to guarantee a good position tracking performance of the controller and the robustness to system’s parametric uncertainties. At last, numerical simulations are conducted to demonstrate the position/force tracking control performance of the proposed impedance control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, W., Peng, J., Liang, B., et al.: Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans. Aerosp. Electron. Syst. 52(1), 85–98 (2016)

    Article  Google Scholar 

  2. Huang, P., Zhang, F., Meng, Z., et al.: Adaptive control for space debris removal with uncertain kinematics, dynamics and states. Acta Astronaut. 128, 416–430 (2016)

    Article  Google Scholar 

  3. Nagamatsu, H., Kubota, T., Nakatani, I.: Capture strategy for retrieval of a tumbling satellite by a space robotic manipulator. In: IEEE Proceedings of International Conference on Robotics and Automation, vol. 1, pp. 70–75. IEEE (1996)

    Google Scholar 

  4. Huang, P., Xu, Y., Liang, B.: Tracking trajectory planning of space manipulator for capturing operation. Int. J. Adv. Robot. Syst. 3(3), 31 (2006)

    Article  Google Scholar 

  5. Huang, P., Cai, J., Meng, Z., et al.: Novel method of monocular real-time feature point tracking for tethered space robots. J. Aerosp. Eng. 27(6), 04014039 (2014)

    Article  Google Scholar 

  6. Aghili, F.: Pre- and post-grasping robot motion planning to capture and stabilize a tumbling/drifting free-floater with uncertain dynamics. In: IEEE International Conference on Robotics and Automation, pp. 5461–5468. IEEE (2013)

    Google Scholar 

  7. Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans. Robot. 28(28), 634–649 (2012)

    Article  Google Scholar 

  8. Mccourt, R.A., Silva, C.W.D.: Autonomous robotic capture of a satellite using constrained predictive control. IEEE/ASME Trans. Mechatron. 11(6), 699–708 (2006)

    Article  Google Scholar 

  9. Floresabad, A., Wei, Z., Ma, O., et al.: Optimal control of space robots for capturing a tumbling object with uncertainties. J. Guidance Control Dyn. 37(6), 1–4 (2014)

    Google Scholar 

  10. Oki, T., Nakanishi, H., Yoshida, K.: Whole-body motion control for capturing a tumbling target by a free-floating space robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2256–2261. IEEE (2007)

    Google Scholar 

  11. Yoshida, K., Nakanishi, H., Inaba, N., et al.: Contact dynamics and control strategy based on impedance matching for robotic capture of a unknown satellite. In: Proceedings of 15th CISM-IFToMM Symposium on Robot Design, Dynamics and Control-Romansy, St-Hubert, Canada (2004)

    Google Scholar 

  12. Yoshida, K., Nakanishi, H., Ueno, H., et al.: Dynamics, control and impedance matching for robotic capture of a unknown satellite. Adv. Robot. 18(2), 175–198 (2004)

    Article  Google Scholar 

  13. Uyama, N., Nakanishi, H., Nagaoka, K., et al.: Impedance-based contact control of a free-flying space robot with a compliant wrist for unknown satellite capture. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4477–4482. IEEE (2012)

    Google Scholar 

  14. Huang, P., Wang, D., Meng, Z., et al.: Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties. IEEE/ASME Trans. Mechatron. 21(5), 2260–2271 (2016)

    Article  Google Scholar 

  15. Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Robot. Res. 16(1), 97–117 (1997)

    Article  Google Scholar 

  16. Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004)

    Article  Google Scholar 

  17. Xu, Q.: Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper. IEEE Trans. Robot. 29(29), 663–673 (2013)

    Article  Google Scholar 

  18. Swaroop, D., Hedrick, J.K., Yip, P.P., et al.: Dynamic surface control for a class of nonlinear systems. Autom. Control IEEE Trans. 45(10), 1893–1899 (2000)

    Article  MathSciNet  Google Scholar 

  19. Wang, M., Ren, X., Chen, Q., et al.: Modified dynamic surface approach with bias torque for multi-motor servomechanism. Control Eng. Pract. 50, 57–68 (2016)

    Article  Google Scholar 

  20. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  21. Zhang, W.H., Ye, X., Jiang, L., et al.: Output feedback control for free-floating space robotic manipulators base on adaptive fuzzy neural network. Aerosp. Sci. Technol. 29(1), 135–143 (2013)

    Article  Google Scholar 

  22. Wie, B.: Space Vehicle Dynamics and Control, 2nd edn. American Institute of Aeronautics and Astronautics Inc., Reston (1998)

    MATH  Google Scholar 

  23. Erickson, D., Weber, M., Sharf, I.: Contact stiffness and damping estimation for robotic systems. Int. J. Robot. Res. 22(1), 41–58 (2003)

    Article  Google Scholar 

  24. Xia, Y., Shi, P., Liu, G.P., et al.: Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theory Appl. 1(1), 75–81 (2007)

    Article  MathSciNet  Google Scholar 

  25. Gao, Z.: On discrete time optimal control: a closed-form solution. In: Proceedings of International Conference on Control Conference, Boston, USA, June, pp. 52–58 (2004)

    Google Scholar 

  26. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9), 924–941 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China [Grant no. 2017YFB1302200], the Joint Funds of the National Natural Science Foundation of China [Grant no. U1613201], and the Key Research and Development Program of Guangdong Province [Grant no. 2019B090915001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Huang, H., Li, B. (2019). Robust Adaptive Force Tracking Impedance Control for Robotic Capturing of Unknown Objects. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27535-8_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27534-1

  • Online ISBN: 978-3-030-27535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics