Skip to main content

Non-concentric Circular Texture Removal for Workpiece Defect Detection

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11743))

Included in the following conference series:

  • 2664 Accesses

Abstract

Since workpiece defect detection is a typical problem in computer vision with small datasets, generally its solutions cannot exploit the advantages of high accuracy, generalization ability, and neural network structures from the deep learning paradigm. Thus, traditional image processing techniques are still widely applied in such requirements. Aiming at three types of defects (crack, pitting and scratch) on a workpiece with non-concentric circular textures that severely interfere in the defect recognition stage, this paper proposes a sliding window filter for the texture detection. Experiments compare the proposed method with the polar coordinate mapping method and the T-smooth texture removal algorithm. Results show that the proposed method reveals the three types of defects better than the other two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stahlinstitut Stahlinstitut VDEh: Fehlerkatalog Grobblech/Catalogue of Heavy Plates Defects, Stahleisen (2015)

    Google Scholar 

  2. Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. EURASIP J. Image Video Process. 2014(1), 50 (2014)

    Article  Google Scholar 

  3. Liu, W., Yan, Y., Li, J., Zhang, Y., Sun, H.: Automated on-line fast detection for surface defect of steel strip based on multivariate discriminant function. In: 2008 Second International Symposium on Intelligent Information Technology Application, vol. 2, pp. 493–497. IEEE (2008)

    Google Scholar 

  4. Ding, S., Liu, Z., Li, C.: AdaBoost learning for fabric defect detection based on hog and SVM. In: 2011 International conference on multimedia technology, pp. 2903–2906. IEEE (2011)

    Google Scholar 

  5. Caleb, P., Steuer, M.: Classification of surface defects on hot rolled steel using adaptive learning methods. In: Proceedings of the KES’2000 Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, (Cat. No. 00TH8516), vol. 1, pp. 103–108. IEEE (2000)

    Google Scholar 

  6. Chondronasios, A., Popov, I., Jordanov, I.: Feature selection for surface defect classification of extruded aluminum profiles. Int. J. Adv. Manuf. Technol. 83(1–4), 33–41 (2016)

    Article  Google Scholar 

  7. Maenpaa, T.: Surface quality assessment with advanced texture analysis techniques. In: Proceedings of the International Surface Inspection Summit, Luxembourg (2006)

    Google Scholar 

  8. Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 285, 858–864 (2013)

    Article  Google Scholar 

  9. Mak, K.-L., Peng, P., Yiu, K.F.C.: Fabric defect detection using morphological filters. Image Vis. Comput. 27(10), 1585–1592 (2009)

    Article  Google Scholar 

  10. Zheng, H., Kong, L.X., Nahavandi, S.: Automatic inspection of metallic surface defects using genetic algorithms. J. Mater. Process. Technol. 125, 427–433 (2002)

    Article  Google Scholar 

  11. Luiz, A.O.M., Flávio, L.C.P., Paulo, E.M.A.: Automatic detection of surface defects on rolled steel using computer vision and artificial neural networks. In: IECON 2010–36th Annual Conference on IEEE Industrial Electronics Society, pp. 1081–1086. IEEE (2010)

    Google Scholar 

  12. Bulnes, F.G., Usamentiaga, R., García, D.F., Molleda, J.: Vision-based sensor for early detection of periodical defects in web materials. Sensors 12(8), 10788–10809 (2012)

    Article  Google Scholar 

  13. Yichi, Z., Lv, W., Xuedong, L.: Defects detection of cold-roll steel surface based on MATLAB. In: 2011 Third International Conference on Measuring Technology and Mechatronics Automation, vol. 1, pp. 827–830. IEEE (2011)

    Google Scholar 

  14. Li, W., Lu, C., Zhang, J.: A local annular contrast based real-time inspection algorithm for steel bar surface defects. Appl. Surf. Sci. 258(16), 6080–6086 (2012)

    Article  Google Scholar 

  15. Bai, X., Fang, Y., Lin, W., Wang, L., Ju, B.-F.: Saliency-based defect detection in industrial images by using phase spectrum. IEEE Trans. Ind. Inf. 10(4), 2135–2145 (2014)

    Article  Google Scholar 

  16. Borwankar, R., Ludwig, R.: An optical surface inspection and automatic classification technique using the rotated wavelet transform. IEEE Trans. Instr. Meas. 67(3), 690–697 (2018)

    Article  Google Scholar 

  17. Hu, G.-H.: Automated defect detection in textured surfaces using optimal elliptical gabor filters. Optik 126(14), 1331–1340 (2015)

    Article  Google Scholar 

  18. Jeon, Y.-J., Choi, D.-C., Lee, S.J., Yun, J.P., Kim, S.W.: Defect detection for corner cracks in steel billets using a wavelet reconstruction method. JOSA A, 31(2), 227–237 (2014)

    Article  Google Scholar 

  19. Ghorai, S., Mukherjee, A., Gangadaran, M., Dutta, P.K.: Automatic defect detection on hot-rolled flat steel products. IEEE Trans. Instrum. Measur. 62(3), 612–621 (2012)

    Article  Google Scholar 

  20. Choi, D.C., Jeon, Y.J., Yun, J.P., Yun, S.W., Kim, S.W.: An algorithm for detecting seam cracks in steel plates. World Acad. Sci. Eng. Technol. 6, 1456–1459 (2012)

    Google Scholar 

  21. Blackledge, J., Dubovitskiy, D.: A surface inspection machine vision system that includes fractal texture analysis. J. Intell. Syst. 3(2), 76–89 (2008)

    Google Scholar 

  22. Susan, S., Sharma, M.: Automatic texture defect detection using gaussian mixture entropy modeling. Neurocomputing 239, 232–237 (2017)

    Article  Google Scholar 

  23. Cen, Y.-G., Zhao, R.-Z., Cen, L.-H., Cui, L.-H., Miao, Z.-J., Wei, Z.: Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction. Neurocomputing 149, 1206–1215 (2015)

    Article  Google Scholar 

  24. Masci, J., Meier, U., Fricout, G., Schmidhuber, J.: Multi-scale pyramidal pooling network for generic steel defect classification. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2013)

    Google Scholar 

  25. Wang, T., Chen, Y., Qiao, M., Snoussi, H.: A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 94(9–12), 3465–3471 (2018)

    Article  Google Scholar 

  26. Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., Büyüköztürk, O.: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng. 33(9), 731–747 (2018)

    Article  Google Scholar 

  27. Xiao, Z., Leng, Y., Geng, L., Xi, J.: Defect detection and classification of galvanized stamping parts based on fully convolution neural network. In: Ninth International Conference on Graphic and Image Processing (ICGIP 2017), vol. 10615, pp. 106150K. International Society for Optics and Photonics (2018)

    Google Scholar 

  28. Li, X., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 139 (2012)

    Google Scholar 

  29. Hassanein, A.S., Mohammad, S., Sameer, M., Ragab, M.E.: A survey on Hough transform, theory, techniques and applications. arXiv preprint arXiv:1502.02160 (2015)

  30. Rahmdel, P.S., Comley, R., Shi, D., McElduff, S.: A review of Hough transform and line segment detection approaches. In: VISAPP, vol. 1, pp. 411–418 (2015)

    Google Scholar 

  31. Sur, F., Grediac, M.: Automated removal of quasiperiodic noise using frequency domain statistics. J. Electron. Imaging 24(1), 013003 (2015)

    Article  Google Scholar 

  32. W Chen, S., Pellequer, J.-L.: DeStripe: frequency-based algorithm for removing stripe noises from AFM images. BMC struct. Biol. 11(1), 7 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shenzhen Overseas High Level Talent (Peacock Plan) Program KQTD20140630154026047, the Shenzhen Theme-Based Basic Research Program JCYJ20180504170303184, and the National Natural Science Foundation of China (under Grant No. 61703284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujia Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, S., Guo, D., Chen, H., Xi, N. (2019). Non-concentric Circular Texture Removal for Workpiece Defect Detection. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11743. Springer, Cham. https://doi.org/10.1007/978-3-030-27538-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27538-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27537-2

  • Online ISBN: 978-3-030-27538-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics