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Abstract. Smart or digital city infrastructures facilitate both decision
support and strategic planning with applications such as government
services, healthcare, transport and traffic management. Generally, each
service generates multiple data streams using different data models and
structures. Thus, any form of analysis requires some form of extract-
transform-load process normally associated with data warehousing to
ensure proper cleaning and integration of heterogeneous datasets. In ad-
dition, data produced by these systems may be generated at a rate which
cannot be captured completely using standard computing resources. In
this paper, we present an ETL system for transport data coupled with a
smart data acquisition methodology to extract a subset of data suitable
for analysis.

1 Introduction

Data from the digital city can be generated from a wide variety of sources across
many services such as housing, healthcare, transport, the environment etc. Simi-
lar to traditional web data, this data is available on-line, typically in either XML,
JSON or CSV format, meaning it must be processed in some form before it can
be properly used. These processing tasks include acquisition and interpretation,
transformation, integration, and analysis or machine learning of data from sen-
sors, devices, vehicles etc. There have been a number of approaches to building
smart city applications [5] and to cluster or integrate query graphs on smart city
data [10,12]. Decision makers who use smart city applications require OLAP
type services to generate the datasets from a warehouse upon which they make
their decision. OnLine Analytical Processing (OLAP) queries offer the richest
form of data extraction with dimensional data providing powerful dimensional
queries. The challenge for smart city researchers lies in incorporating web, sensor
and streaming data to these datasets usually in RDF format [2]. Sources are often
new, not always available, are not suited to integration, and use heterogeneous
data models.
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Motivation. DublinBus [4] provides a range of online services related to the
running of their bus network for the city of Dublin. One of these services pro-
vides a real-time location for all buses on the network. Occasionally, times are
provided for buses that do not exist. While these can be detected using an anal-
ysis of the real-time data streams, there is no indication as to why buses may
appear and disappear from the system. In order to facilitate a deeper analysis, it
requires a methodology to acquire and transform data into a usable format, and
at sufficiently regular intervals so as not to lose any real-time information. This
poses two problems. Firstly, the system requires considerable resources to ensure
that all of the data, for the entire network of bus journeys is extracted. Secondly,
sufficiently flexible OLAP functionality is required to manipulate datasets for the
types of analyses required.

Contribution. In this research, we present a framework for manipulated trans-
port data streams so as to create datasets for machine learning algorithms. Our
data model represents one subset of a larger smart city application where our
bus transport data can be integrated with other smart city datasets using se-
lected attributes from time and geo dimensions. Our contribution is to tackle
the problem of big data by using an algorithm to extract smaller representative
samples. We also provide an extended OLAP which uses keyword extensions to
present data so as to meet specific requirements for machine learning algorithms.
A longer version of this paper can be found at [13].

Paper Structure. The paper is structured as follows: in §2, we provide a discus-
sion on state of the art; in §3, we provide a description of our Extract-Transform-
Load architecture which manages source transport data into our multidimen-
sional model; in §4, we present an algorithm to optimise the acquisition of data,;
in §5, we present our evaluation and discussion; and finally in §6, we conclude
the paper.

2 Related Research

In [11], the authors present a system to construct a data warehouse from user re-
quirements. The system is given a domain ontology which is used to derive facts
which are subsequently presented to the user. Once the user selects their desired
fact, the data is extracted and presented to them. Similar to our approach, the
authors attempt to identify facts without user interaction. However, the authors’
approach requires a domain ontology to discover these facts while ours is static.
In addition, our system provides several OLAP extensions to provide datasets in
an analysis-ready format. In [1], the authors present an automatic ETL system.
The authors use an ontology to provide semantic data integration, where that
ontology is derived from a data warehouse schema and a lexicon. Similar to our
approach, the authors then use clustering to determine the similarity between
data sources while we use similarity matrices in order to determine the best
possible subset of data to be extracted. The authors in [9] present an ETL ap-
proach which uses domain-specific modelling. Their own language (DSL) is used
to model the different steps in the ETL process. A domain expert using this
language designs the ETL framework which is subsequently deployed. Domain
modelling is used to describe the data sources and these sources are then linked



using an ontology. We also use an ETL process to extract data, however we also
have a pre-processing step before data acquisition to determine a suitable subset
of the data which can be acquired. In [8], the authors use RDF and OWL ontolo-
gies to create integrated data marts. Each data source in the mart is provided
with an ontology which is used to construct an RDF version of the data. From
this, an OWL definition of the mart uses RDF queries to extract the required
data from each source. In contrast, our approach uses the original source format
to extract dimensional data. Our system provides integration dimensions for in-
tegrated data marts. In addition, we provide OLAP extensions to convert the
data when being queried from the data warehouse.In [3] the authors present a
big data architecture for smart city data. The system is composed of a series of
layers, starting from the data source to a presentation layer providing analysis
applications. Similar to our approach the authors use transport as a use case
and a custom ETL workflow to deliver a k-means analysis, while our approach
presents a generic model for transport data coupled with a series of transport
specific OLAP extensions. Finally, the authors in [7] present a smart city plat-
form which allows a user to search and integrate smart city data to suit their
end requirements. A user selects the data source(s) they wish to integrate and
the data undergoes an ETL process to convert all source data into RDF triplets.
The authors use RDF as their common data model while our approach uses a
data model of our own design. Furthermore, our system strives to provide data
which is suitable for analysis.

The state of the art in ETL and data warehousing shows that some form of
common data model either on a data source layer or globally is required to
provide holistic integration. We adopt this approach through the use of our data
model. However, in limiting ourselves to a particular domain (i.e. transport)
we are able to provide a set of domain specific operations to facilitate OLAP
analysis.

3 Data Acquisition and Transformation

In this section, we begin with a description of the Extract-Transform-Load
(ETL) process to acquire and transform raw data. We then describe our multi-
dimensional (cube) data model, and provide a description of the data acquisition
and transformation process.

3.1 System Architecture

In figure 1, we show the system workflow as a series of layers, each containing
data in different formats, where layers are connected by data transformation
processes. The Source Data layer is generally a web service providing an APT to
facilitate JSON or XML data extraction. In this instance, the DublinBus Real
Time Passenger Information (RTPI) API generates XML elements based on
bus routes or stops. The Data Acquisition process is effectively a purpose built
wrapper to the Data Staging Layer, which manages JSON, XML or relational
data. The Data Transformation processor is a generic process converting one of
3 data types to the system data model (the predefined smart city data mart
defined in section 3.2). Our customised OLAP (OnLine Analytical Processing)
API described in section 4, generates the datasets for analyses.
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Fig. 1. System Architecture

The cube structure for bus transport data is presented in figure 2, in the form
of a star schema, centred around the FtRealTimeData fact. It comprises 5 di-
mensions: Stop, RouteStops, Route, Time and Date. The Stop, Date and Time
dimensions are used for integration with other Cubes through the attributes
latitude, longitude, Date and Time. These are underlined within figure 2.

3.2 Transport Data Model
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Fig. 2. Transport Data Schema



It is important to note, while we use Dublin Bus for our case study, the model
and algorithms presented are sufficiently generic for use in analysing any trans-
port network provided the network can be modelled as a graph; where nodes
indicate points of interest (e.g. bus stops, train stations) connected by edges. A
route indicates a specific path through the network. This coupled with the avail-
ability of a real-time data stream providing arrival times to points of interest
could be used by our model for analysis. The Stop dimension describes every bus
stop across the network with dimensional values for: stop identifier (StopID); a
textual address for the stop (address); and the co-ordinates of the stop (latitude,
longitude) effectively making this the Geo dimension. The Route dimension con-
tains static information for bus routes such as the start and end points of the
route and a number of flags indicating the type of route (e.g. IsXpresso indi-
cating if the bus is a commuter route). The RouteStops dimension models the
stops for each route. This is required in order to examine the route for a specific
bus. Information on each stop and their related route lines (stops of one route,
stop numbers, stop orders, destinations, directions, etc.) are stored in this di-
mension. The RouteStops dimension models the many to one relationship held
between a stop and a route. It comprises: the stop number within that route
order; a full textual address of the stop address; the number of stops preced-
ing the current stop on the route StopsBefore; the number of stops after the
current stop on the route StopsAfter; the route number Route; the direction of
the route Direction (this can either be ‘Inbound’ or ‘Outbound’); and the stop
number itself Stop. The Time dimension is a role-playing dimension [6], pro-
viding a many-to-1 relationship to the fact table FtRealTimeData. This is used
where we wish to analyse across any of the time values extracted from real time
information. It stores time in a 24-hour format with each dimensional instance
populated with additional flags such as Morning, which can be used in different
types of analyses. The Date dimension is similar to the Time dimension, captur-
ing data such as Day, Week and DayOfWeek. Finally, the FtRealTimeData fact
table stores for each instance of real-time data: if it is rush hour; if the bus is
currently at the stop; the schedule time the bus is due at the stop; the real-time
due time; the scheduled departure time; and real-time departure time. In terms
of persistence the dimensions Stop (Geo), Route and RouteStops are largely
static and are harvested once. However, they may change as Routes are added
and removed or a specific route is changed. This in turn introduces a historical
aspect to these dimensions, meaning they are slowly changing dimensions [6].

3.3 Data Extraction

Data is extracted from the RTPI service [4] in 2 minute intervals: this is our
limit for data acquisition without losing real-time information. Of the functions
provided by the service, our system uses: GetRoutes, which provides a high level
overview of a route, including the start and end address of the route and the
name of the route; GetStopDataByRoute, which provides data for each stop,
on a particular route.; and GetRealTimeStopData, which provides the realtime
component of the system. It takes a stop number as input and returns a list of
routes which are due at the stop. It provides 28 attributes for each bus due, most



of which are repeated metadata values. The data used for our work are: the bus
number due at the stop, a flag indicating whether or not the bus is in congested
traffic, a flag indicating whether or not the bus is at the stop, the time of the
server response and the scheduled and actual arrival times for the bus.

3.4 Data Transformation

The data is obtained from the service in XML format. For some attributes, the
data is taken directly from the raw source and placed into the data warehouse.
However, a number of attributes are provided by data enrichment. They are as
follows: Route.cross_liffey indicates if the route travels across the city, this is
manually annotated for each route. Route.inboundstops & Route.outbound
stops are the number of stops on the route. Route. journey_length approx-
imates the length of the route based on the distances between all stops on
the route. Route.avgJourneyTime is populated from historical data denoting
the travel time in minutes of the route. Finally, the attributes busShare and
stopShare in the fact table denote how many buses are due at a particular
stop within 5 minutes and the total number of routes which share this stop
respectively.

4 Extracting Representative Samples

There are close to 4,000 bus stops in the Dublin Bus network, each updated every
minute. In order to extract the entire network, this requires between 12,000 and
20,000 queries and requires up to 30 minutes on a typical quad-core workstation.
If we limit each extraction to 2 minutes, this allows for up to 600 bus stops to
be extracted. If we were to limit extraction to one minute intervals we would
effectively halve the size of our dataset, limiting the number of complete routes
that can be obtained, providing us with less data for analysis. Therefore, a
strategy is required to maximise the extracted dataset. A small number of key
steps are needed to obtain the best subset of the data. By best, we meant to
maximise the amount of data acquired while minimising the number of queries
(the set of bus stops). In order to maximise the dataset for the minimum queries,
a route similarity matrix is constructed, which compares routes based on their
number of shared stops. When constructing the similarity matrix, each route
can be considered as a distinct set of stops which a bus must visit, in a specific
order. The routes were then compared to each other by comparing the number
of stops they share and the total number of stops for both routes. This produces
the matrix shown in Table 1. We can use this matrix to determine how similar
two routes are. For example, the routes 120 and 116 share 60% of their stops.
Using this matrix, the algorithm then selects routes with the highest degree of
interaction. The Data Acquisition command is specified in Definition 1 using a
sql-like syntax. It informs the system how to acquire the required dataset based
on routes or specific bus stops.

In Definition 1, the acquisition expression uses 3 sub-expressions: INSERT INTO
which must specify the name of the fact (always FtRealTimeData in our case);
the optional WHERE clause is used to provide a set of routes or a set of stops;
and the optional LIMIT clause contains either a time limit expressed in seconds



Table 1. Route similarity Matrix

Route(1| 11 |116(118|120|122|123| 13
1 0.45(0.43|0.65|0.54|0.46]0.48|0.34
11 1 10.57]0.76|0.63|0.56|0.58]0.44

116 1 10.85] 0.6 |0.52|0.55|0.38

—_

or a bus stop limit. If the user does not specify a limit, the default limit, the
number of stops which can be obtained in 2 minutes, will be used. Additionally, if
no route or stop list is presented the system will choose two stops with the highest
number of routes as default. Example 1 provides a sample query which would be
used to populate the fact table for the routes 145, 42 and other routes which have
the highest degree of interaction. Example 2 allows a user to select specific stops
they wish to obtain. The system examines routes which pass through these stops,
and then, using the route matrix selects the additional stops to be obtained.

Definition 1. Data Acquisition Command

INSERT INTO <FACT>

WHERE [ROUTE IN <ROUTELIST>] || [STOP IN <STOPLIST>]
LIMIT [TIME_LIMIT] || [STOP_LIMIT]

Ezxample 1. Data acquisition for route Ezample 2. Data acquisition by Stops

INSERT INTO FtRealTimeData INSERT INTO FtRealTimeData

WHERE ROUTE IN (145,42) WHERE STOP IN (4331, 7475)
The minimum value for the stop limit is 5, as that is the smallest number of
stops which make up a particular route. The system starts by examining the
list of potential routes which can be obtained. As each route can be considered
as a set of stops, the system seeks to obtain the maximum number of stops by
examining commonalities across routes using the route similarity matrices. When
a route is selected, it is added to a list and the similarity matrix is consulted
to add the next route with the highest similarity to those already selected. This
process continues until either the upper limit of stops is reached, or that there
are no more routes which can be added without passing the upper limit. For our
experiments, the query used to gather the data used was based on the default
values, effectively making our query INSERT INTO FtRealTimeData. Due to the
nature of the bus network, it is inevitable that we will also obtain information
on incomplete routes. In total, there are 10 full routes and 105 routes in total
(95 route fragments).

5 Evaluation

5.1 OLAP Extensions

OLAP functionality (such as Slice, Dice and Pivot) can be used on the fact table
to extract and view data for further analysis. However, due to the complexity
of the data, these commands may not generate datasets suited to the required
analyses to extract insights from the dataset. Because of this, we introduce three
OLAP extensions which are used to produce analysis-ready datasets. These are:



series, lag and interval. Series: If an analyst wishes to examine a particular
route and direction a query, such as the one shown in Ex 3 would be used.

Ezxample 3. Sample SQL for route and Output for query shown in Ex 3

direction _ ) :
responseTime|Stop|aim_min_due
SELECT =« 10:00 AM 7475 5
FROM FtRealTimeData join RouteStops 10:00 AM 4133 10
h R = * and Di ion ='1°
(;VR]‘;];; B;ulgilteTélfess(?nseTi!gec;t on 10:02 AM 7475 3

This would produce a list of all data grabbed from the real-time system based
on the time they were scraped. For an individual bus, there are several measure-
ments per individual stop on the route each taken at different times. Such data

Series Lag
responseTime | 7475 | 4133 responseTime | 7475 | 4133
10:00AM 5 10 2 -1 -1
10:02AM 3 8

Interval
responseTime 7475 - 4133
10:00AM 5
10:02AM 5
Fig. 3. OLAP extension examples

would need to be pivoted in order to be useful. To accomplish this we provide
an OLAP extension called ‘series’ which produces a time-series representation
of the data. This is non-trivial for the dataset, as it requires a list of all stops in
order for a route be constructed. This command returns millions of records, a
small sample of the output of the Series command can be seen in the Series
table in figure 3. In this example we can see the data has been pivoted in order
of stops on the route, with the stops occupying the columns, each row repre-
sents all data gathered at a specific time, and each cell occupies the measure
aimed_minutes_due. As the series works based on a set of ordered stops the
extension requires a route and direction as input. Lag: A common method
used in time-series analysis is lagging. This is used to quantify a features rate
of change with respect to time. In conjunction with the series keyword this
can be used to produce a dataset showing the rate of change by time for all
measurements. The time taken to execute a series query for 2,291,621 rows was
239 seconds. A sample output can be seen in the Lag table in figure 3. The time
taken to execute a lag query for a series of size 133124 %73 was 3 seconds. Inter-
val: The series keyword displays the progression of a bus over time, however an
analyst may wish to examine the relationships between stops. This functionality
is provided by the keyword interval. It can be considered similarly to lagging
data in standard time series analysis. This keyword is used in conjunction with
series to produce a dataset listing the intervals between stops. A sample of the
output can be seen in the Interval table of figure 3. The time taken to execute
an interval query for a series of size 133124 x 73 was 51 seconds.



5.2 Data Collection & Consistency
The purpose of our approach is to collect a subset of big data which is suitable

for analysis. To determine the feasibility of our approach we must satisfy two
conditions: that our data collection process is consistent, and that collected data
is suitable for analysis. Data Collection: We collected data for 30 days and
collected 31,589,416 instances of real-time data (fact table records). Table 2
details the number of instances scraped per day. Looking at the Count column
we can see that Wednesday and Sunday have the lowest number of instances
(a limited number of routes run on Sunday). Wednesday has the lowest number
of records at 3762178. This is because the real time system was unavailable one
Wednesday. On average we obtain 1000000 records per day. Using this figure, we
estimate, had the system been available that we would have obtained 47000000
records, bringing the figure for Wednesday in line with other weekdays. The
minimum records count for Tuesday at 1777 can be explained by the fact that
the system was first initialised on Tuesday.

Table 2. Total data acquisition by weekday

Weekday |Count |Average/Max |Min StDev
Monday  |5104382| 1701461|1783311|1589465| 81958
Tuesday 4398690 1099673|1566792 1777637228
Wednesday 3762178 1254059|1399659| 990699| 186570
Thursday [5252280| 1050456{1501763| 35223|558590
Friday 4577739| 1144435(1539966| 394970| 464937
Saturday [4531959| 1510653|1530066(1474605| 25515
Sunday 3962188| 1320729|1393328(1242274| 61806

Data Consistency We have shown that we can collect data in a consistent
manner, however the next step is to show that the data itself is consistent.
Missing data is expected as the system may go down, or provide inconsistencies.
However, in aggregate, all data for an individual bus should be highly correlated.
With this as our metric, we extracted all data for 4 full bus routes as a time series
using the series keyword. A matrix for all correlations for individual buses on a
route were then calculated for each bus; the results are shown in Table 3. RouteID
is the identifier of the bus route, Records is the count of records obtained for
the route. mean, std, min and max are the average, standard deviation, minimum
and maximum correlation found respectively and finally the values 25%, 50% and
70% denote the correlation for their percentiles. The difference in records is due
to the differing lengths of the routes. As we can see, the data is highly correlated
with all routes having > 0.8 at the 50" percentile and > 0.9 at the 75", As is
common with real world datasets, missing data is the cause for the minimum
values. The missing data can manifest either due to the fact that we are obtaining
data at 2 minute intervals, or can be due to outages and anomalies within the
real time system itself (the focus of our future work).

6 Conclusions

As more smart city services come online, more information becomes available to
make strategic decisions for our cities. The velocity and volume of this data may



Table 3. Correlations for bus routes

RoutelD|Records|/mean| std| min|25%|50%|75%|max
1 2793896| 0.77(0.37| -0.95| 0.7] 0.96| 0.99] 0.99
2 2136743| 0.74(0.44| -0.91] 0.73] 0.97| 0.99| 0.99
3 129474 0.72]0.33|-0.447| 0.54| 0.88| 0.98| 0.99
4 114442 0.64]0.42|-0.675| 0.34| 0.85| 0.98| 0.99

prove too large to manage with limited computing resources. In this work, we
present an ETL system for modelling a real-time smart city service and a process
which can be used to extract a usable dataset from a service which provides
high-volume data at speeds which cannot be captured completely without an
investment in computing resources. Our evaluation shows that the data is being
captured at a consistent rate and that the datasets themselves are consistent
and suitable for analysis. Our future work is to conduct a deeper analysis into
detecting anomalies across the bus network where delays are caused by an event
not captured in traditional urban data streams.
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