Skip to main content

Quantify the Variability of Time Series of Imprecise Data

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11529))

Included in the following conference series:

Abstract

In order to analyze the quality of web data harvest, it is important to consider the variability of the volumes of data harvested over time. However, these volumes of data collected over time form more trend information than accurate information due to the non-exhaustiveness of the harvests and the temporal evolution of the strategies. They form imprecise time series data. Therefore, due to the characteristics of the data, the variability of a particular series must be considered in relation to the other series. The purpose of this paper is to propose a fuzzy approach to measure the variability of time series of imprecise data represented by intervals. Our approach is based (1) on the construction of fuzzy clusters on all data at each time-stamp (2) on the difference in the positioning of data in clusters at each time-stamp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagui, S., Mink, D., Cash, P.: Data mining techniques to study voting patterns in the US. Data Sci. J. 6, 46–63 (2007)

    Article  Google Scholar 

  2. Ben Othmane, Z., Bodenes, D., de Runz, C., Aït Younes, A.: A multi-sensor visualization tool for harvested web information: insights on data quality. In: IV, pp. 110–116. IEEE Computer Society (2018)

    Google Scholar 

  3. Cappiello, C.: On the role of data quality in improving web information value. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015 Companion, pp. 1433–1433. ACM, New York (2015)

    Google Scholar 

  4. Charkhabi, M., Dhot, T., Mojarad, S.A.: Cluster ensembles, majority vote, voter eligibility and privileged voters. Int. J. Mach. Learn. Comput. 4(3), 275 (2014)

    Article  Google Scholar 

  5. Coelho, C., Ferro, C., Stephenson, D., Steinskog, D.: Methods for exploring spatial and temporal variability of extreme events in climate data. J. Clim. 21(10), 2072–2092 (2008)

    Article  Google Scholar 

  6. Couso, I., Dubois, D.: On the variability of the concept of variance for fuzzy random variables. IEEE Trans. Fuzzy Syst. 17(5), 1070–1080 (2009). https://doi.org/10.1109/TFUZZ.2009.2021617

    Article  Google Scholar 

  7. Dedeke, A.: Building quality into information supply chains: robust information supply chains. In: Information Quality, pp. 99–110. Routledge (2014)

    Google Scholar 

  8. Dubois, D., Hadjali, A., Prade, H.: Fuzziness and uncertainty in temporal reasoning. J. UCS 9, 1168 (2003)

    MathSciNet  Google Scholar 

  9. Felber, D.: Order statistics and variability in data streams. Ph.D. thesis, UCLA (2015)

    Google Scholar 

  10. Kruse, R., Meyer, K.D.: Statistics with Vague Data, vol. 6. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  11. McSherry, D.: Precision and recall in interactive case-based reasoning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 392–406. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44593-5_28

    Chapter  MATH  Google Scholar 

  12. Nguyen, H.T., Kreinovich, V.: Nested intervals and sets: concepts, relations to fuzzy sets, and applications. In: Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations. APOP, vol. 3, pp. 245–290. Springer, Boston (1996). https://doi.org/10.1007/978-1-4613-3440-8_11

    Chapter  MATH  Google Scholar 

  13. Nikolaidis, E., Chen, S., Cudney, H., Haftka, R.T., Rosca, R.: Comparison of probability and possibility for design against catastrophic failure under uncertainty. J. Mech. Des. 126(3), 386–394 (2003). https://doi.org/10.1115/1.1701878

    Article  Google Scholar 

  14. Smets, P.: Probability, possibility, belief: which and where? In: Smets, P. (ed.) Quantified Representation of Uncertainty and Imprecision. HDRUMS, vol. 1, pp. 1–24. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-017-1735-9_1

    Chapter  Google Scholar 

  15. Yao, Y.Y., Wong, S.K.M.: Interval approaches for uncertain reasoning. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 381–390. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63614-5_37

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Aït Younes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Othmane, Z.B., de Runz, C., Younes, A.A., Mercelot, V. (2019). Quantify the Variability of Time Series of Imprecise Data. In: Cuzzocrea, A., Greco, S., Larsen, H., Saccà, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2019. Lecture Notes in Computer Science(), vol 11529. Springer, Cham. https://doi.org/10.1007/978-3-030-27629-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27629-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27628-7

  • Online ISBN: 978-3-030-27629-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics