Skip to main content

Deep Learning for EEG Motor Imagery-Based Cognitive Healthcare

  • Chapter
  • First Online:
Connected Health in Smart Cities

Abstract

Electroencephalography (EEG) motor imagery signals have recently gained significant attention due to its ability to encode a person’s intent to perform an action. Researchers have used motor imagery signals to help disabled persons control devices, such as wheelchairs and even autonomous vehicles. Hence, the accurate decoding of these signals is important to brain–computer interface (BCI) systems. Such motor imagery-based BCI systems can become an integral part of cognitive modules that are increasingly being used in smart city frameworks. However, the classification and recognition of EEG have consistently been a challenge due to its dynamic time series data and low signal-to-noise ratio. Deep learning methods, such as the convolution neural network (CNN), have achieved remarkable success in computer vision tasks. Considering the limited applications of deep learning for motor imagery EEG classification, this work focuses on developing CNN-based deep learning methods for such purpose. We propose a multiple-CNN feature fusion architecture to extract and fuse features by using subject-specific frequency bands. CNN has been designed with variable filter sizes and split convolutions for the extraction of spatial and temporal information from raw EEG data. A feature fusion technique based on autoencoders is applied. Cross-encoding technique has been proposed and is successfully used to train autoencoders for a novel cross-subject information transfer and augmenting EEG data. This proposed method outperforms the state-of-the-art four-class motor imagery classification methods for subject-specific and cross-subject data. Autoencoder cross-encoding helps to learn subject invariant and generic features for EEG data and achieves more than 10% increase on cross-subject classification results. The fusion approaches show the potential of applying multiple CNN feature fusion techniques for the advancement of EEG-related research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Emami, T. Chau, Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface. Clin. Neurophysiol. 129(6), 1268–1275 (2018)

    Article  Google Scholar 

  2. F. Lotte et al., A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Article  Google Scholar 

  3. A.M. Chiarelli, P. Croce, A. Merla, F. Zappasodi, Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification. J. Neural Eng. 15(3), 036028 (2018)

    Article  Google Scholar 

  4. M.-P. Hosseini, D. Pompili, K. Elisevich, H. Soltanian-Zadeh, Optimized deep learning for EEG big data and seizure prediction BCI via internet of things. IEEE Transactions on Big Data 3(4), 392–404 (2017)

    Article  Google Scholar 

  5. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  6. T.M. Vaughan et al., Brain-computer interface technology: a review of the Second International Meeting. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 94–109 (2003)

    Article  Google Scholar 

  7. M.S. Hossain et al., Applying Deep Learning for Epilepsy Seizure Detection and Brain Mapping Visualization. ACM Trans. Multimedia Comput. Commun. Appl. (ACM TOMM) 14(5), 10 (2018). 16 pages

    Google Scholar 

  8. M. Alhussein et al., Cognitive IoT-cloud integration for smart healthcare: case study for epileptic seizure detection and monitoring. Mobile Netw. Appl., 1–12 (2018)

    Google Scholar 

  9. S.U. Amin et al., Cognitive smart healthcare for pathology detection and monitoring. IEEE Access 7, 10745–10753 (2019). https://doi.org/10.1109/ACCESS.2019.2891390

    Article  Google Scholar 

  10. L.J. Greenfield, J.D. Geyer, P.R. Carney, Reading EEGs: A practical approach (Lippincott Williams & Wilkins, Philadelphia, PA, 2012)

    Google Scholar 

  11. G. Pfurtscheller, F.L. Da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  12. K.K. Ang, Z.Y. Chin, C. Wang, C. Guan, H. Zhang, Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 6, 39 (2012)

    Article  Google Scholar 

  13. L. Tonin, T. Carlson, R. Leeb, J. d. R. Millán, Brain-controlled telepresence robot by motor-disabled people, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, Honolulu, HI, 2011), pp. 4227–4230

    Google Scholar 

  14. A. Ramos-Murguialday et al., Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74(1), 100–108 (2013)

    Article  Google Scholar 

  15. G. Muhammad et al., Automatic Seizure Detection in a Mobile Multimedia Framework. IEEE Access 6, 45372–45383 (2018)

    Article  MathSciNet  Google Scholar 

  16. F. Nijboer et al., A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119(8), 1909–1916 (2008)

    Article  Google Scholar 

  17. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Proces. Syst., 1097–1105 (2012)

    Google Scholar 

  18. Y. LeCun and Y. Bengio, Convolutional networks for images, speech, and time series, in MA Arbib The Handbook of Brain Theory and Neural Networks, MIT PressCambridge, MA 3361, 10, p. 1995, 1995

    Google Scholar 

  19. H.-C. Shin et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  20. A. Ghoneim et al., Medical Image Forgery Detection for Smart Healthcare. IEEE Commun. Mag. 56(4), 33–37 (2018). https://doi.org/10.1109/MCOM.2018.1700817

    Article  Google Scholar 

  21. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks. Adv. Neural Inf. Proces. Syst., 153–160 (2007)

    Google Scholar 

  22. M.S. Hossain et al., Improving consumer satisfaction in smart cities using edge computing and caching: A case study of date fruits classification. Futur. Gener. Comput. Syst. 88, 333–341 (2018)

    Article  Google Scholar 

  23. A. Antoniades et al., Detection of interictal discharges with convolutional neural networks using discrete ordered multichannel intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 25(12), 2285–2294 (2017)

    Article  Google Scholar 

  24. M. Rawashdeh et al., Reliable service delivery in Tele-health care systems. J. Netw. Comput. Appl. 115, 86–93 (2018)

    Article  Google Scholar 

  25. X. Zhang, L. Yao, Q.Z. Sheng, S.S. Kanhere, T. Gu, D. Zhang, Converting your thoughts to texts: Enabling brain typing via deep feature learning of eeg signals, in 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), (IEEE, 2018), pp. 1–10

    Google Scholar 

  26. P. Mirowski, D. Madhavan, Y. LeCun, R. Kuzniecky, Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)

    Article  Google Scholar 

  27. X. Xie, Z.L. Yu, H. Lu, Z. Gu, Y. Li, Motor imagery classification based on bilinear sub-manifold learning of symmetric positive-definite matrices. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 504–516 (2017)

    Article  Google Scholar 

  28. J. Decety, D.H. Ingvar, Brain structures participating in mental simulation of motor behavior: A neuropsychological interpretation. Acta Psychol. 73(1), 13–34 (1990)

    Article  Google Scholar 

  29. K.K. Ang et al., A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46(4), 310–320 (2015)

    Article  Google Scholar 

  30. F. Lotte, A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces, in Guide to Brain-Computer Music Interfacing, ed. by E. R. Miranda, J. Castet, (Springer, Heidelberg, 2014), pp. 133–161

    Google Scholar 

  31. H. Ramoser, J. Muller-Gerking, G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)

    Article  Google Scholar 

  32. F. Lotte, C. Guan, Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2011)

    Article  Google Scholar 

  33. P. Bashivan, I. Rish, M. Yeasin, and N. Codella, Learning representations from EEG with deep recurrent-convolutional neural networks, in CoRR, vol. abs/1511.06448, 2015

    Google Scholar 

  34. Y.R. Tabar, U. Halici, A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14(1), 016003 (2016)

    Article  Google Scholar 

  35. H. Cecotti, A. Graser, Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)

    Article  Google Scholar 

  36. S. Stober, Learning discriminative features from electroencephalography recordings by encoding similarity constraints, in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2017), pp. 6175–6179

    Google Scholar 

  37. R.T. Schirrmeister et al., Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  38. P. Thodoroff, J. Pineau, and A. Lim, Learning robust features using deep learning for automatic seizure detection, in Machine Learning for Healthcare Conference, 2016, pp. 178–190

    Google Scholar 

  39. R.T. Canolty et al., High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793), 1626–1628 (2006)

    Article  Google Scholar 

  40. K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter bank common spatial pattern (FBCSP) in brain-computer interface, in 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), (IEEE, 2008), pp. 2390–2397

    Google Scholar 

  41. C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, G. Pfurtscheller, BCI Competition 2008–Graz data set A, vol 16 (Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 2008)

    Google Scholar 

  42. W. Wang, Y. Huang, Y. Wang, L. Wang, Generalized autoencoder: A neural network framework for dimensionality reduction. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 490–497 (2014)

    Google Scholar 

  43. S.U. Amin, M. Alsulaiman, G. Muhammad, M.A. Bencherif, M.S. Hossain, Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification. IEEE Access 7, 18940–18950 (2019). https://doi.org/10.1109/ACCESS.2019.2895688

    Article  Google Scholar 

  44. V.J. Lawhern, A.J. Solon, N.R. Waytowich, S.M. Gordon, C.P. Hung, B.J. Lance, EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  45. S. Sakhavi, C. Guan, S. Yan, Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems (99), 1–11 (2018)

    Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamim Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amin, S.U., Alsulaiman, M., Muhammad, G., Hossain, M.S., Guizani, M. (2020). Deep Learning for EEG Motor Imagery-Based Cognitive Healthcare. In: El Saddik, A., Hossain, M., Kantarci, B. (eds) Connected Health in Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-030-27844-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27844-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27843-4

  • Online ISBN: 978-3-030-27844-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics