Abstract
We present an investigation of the usefulness of consonance as a stylistic feature for author attribution of historical texts. We describe an algorithm for extracting consonance from written text and a set of experiments using different classifiers to explore the accuracy of consonance-based attribution on a set of 18th-century documents and a collection of 19th-century literary works.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbasi, A., Chen, H.: Applying authorship analysis to extremist group web forum messages. IEEE Intell. Syst. 20(5), 67–75 (2005)
Addanki, K., Wu, D.: Unsupervised rhyme scheme identification in hip hop lyrics using hidden Markov models. In: Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol. 7978, pp. 39–50. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39593-2_3
Agrawal, M., Gonçalves, T.: Age and gender identification using stacking for classification. PAN at CLEF 2016. In: Balog, K., et al. (eds.) CLEF 2016 Eval. Labs and Workshop, 16 September, Evora, Portugal. CEUR-WS.org (2016). ISSN 1613–0073
Barquist, C., Shie, D.: Computer analysis of alliteration in Beowulf using distinctive feature theory. Literary Linguist. Comput. 6(4), 274–280 (1991)
Binongo, J.N.G.: Who wrote the 15th book of Oz? An application of multivariate statistics to authorship attribution. Comput. Linguist. 16(2), 9–17 (2003)
Burrows, J.: A second opinion on Shakespeare and authorship studies in the twenty-first century. Shakesp. Q. 63(3), 355–92 (2012)
Burrows, J.: Computation into Criticism: A Study of Jane Austen’s Novels and an Experiment in Method. Clarendon Press, Oxford (1987)
Craig, H., Kinney, A. (eds.): Shakespeare, Computers and the Mystery of Authorship. Cambridge University Press, Cambridge (2009)
deVel, O., Anderson, A., Corney, M., Mohay, G.M.: Mining e-mail content for author identification forensics. SIGMOD Rec. 30(4), 55–64 (2001)
Dumalus, A., Fernandez, P.: Authorship attribution using writer’s rhythm based on lexical stress. In: 11th Philippine Computing Science Congress, Naga City, Philippines (2011)
Ucelay, J.G., et al.: Profile-based approach for age and gender identification-PAN at CLEF 2016. In: Balog, K., et al. (eds.) CLEF 2016 Eval. Labs and Workshop, 16 September Evora, Portugal. CEUR-WS.org (2016). ISSN 1613–0073
Gungor, A.: Benchmarking authorship attribution techniques using over a thousand books by fifty victorian era novelists. Purdue Master of Thesis (2018)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
Hoover, D.: Authorship attribution variables and victorian drama: words, word-ngrams, and character-ngrams. In: Proceedings of DH 2018, 18 June, Mexico City, Mexico, pp. 212–214 (2017)
Ivanov, L.: Learning patterns of assonance for authorship attribution of historical texts: FLAIRS-32, Sarasota, FL, USA, vol. 5, no. 19, pp. 191–196 (2019)
Ivanov, L., Aebig, A., Meerman, S.: Lexical stress-based authorship attribution with accurate pronunciation patterns selection. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2018. LNCS (LNAI), vol. 11107, pp. 67–75. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00794-2_7
Ivanov, L.: Using alliteration in authorship attribution of historical texts. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2016. LNCS (LNAI), vol. 9924, pp. 239–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45510-5_28
Ivanov, L., Petrovic, S.: Using lexical stress in authorship attribution of historical texts. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS (LNAI), vol. 9302, pp. 105–113. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24033-6_12
Jackson, M.D.: Determining the Shakespeare Canon: Arden of Faversham and A Lover’s Complaint. Oxford University Press, Oxford (2014)
Jackson, M.D.: New research on the dramatic canon of Thomas Kyd. Res. Oppor. Medieval Renaiss. Drama 47, 107–127 (2008)
Juola, P.: JGAAP: a system for comparative evaluation of authorship attribution. J. Chicago Colloq. Digit. Hum. Comput. Sci. 1(1), 1–5 (2009)
Kotzé, E.: Author identification from opposing perspectives in forensic linguistics. Southern Afr. Linguist. Appl. Lang. Stud. 28(2), 185–197 (2010)
Kuznetsov, M., Motrenko, A., Kuznetsova, R., Strijov, V.: Methods for intrinsic plagiarism detection and author diarization-PAN at CLEF 2016. In Balog, K., et al. (eds.) CLEF 2016 Eval. Labs and Workshop, 16 September, Evora, Portugal. CEUR-WS.org (2016). ISSN 1613–0073
Lewis, D., Yang, Y., Rose, T., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)
Lowe, D., Matthews, R.: Shakespeare vs. Fletcher: a stylometric analysis by radial-basis functions. Comput. Hum. 29, 449–461 (1995)
Morton, A.: The authorship of Greek prose. J. Roy. Stat. Soc. 128, 169–233 (1965)
Mosteller, W.: Inference and Disputed Authorship: The Federalist. AWL, Reading (1964)
Ogaltsov, A., Romanov, A.: Language variety and gender classification for author profiling in PAN 2017 - PAN at CLEF 2017. In: Cappellato, L., et al. (eds.) CLEF 2017 Eval. Labs and Workshop, 17 September, Dublin, Ireland. CEUR-WS.org (2017). ISSN 1613–0073
Petrovic, S., Berton, G., Campbell, S., Ivanov, L.: Attribution of 18th century political writings using machine learning. J. Technol. Soc. 11(3), 1–13 (2015)
Petrovic, S., Berton, G., Schiaffino, R., Ivanov, L.: Examining the Thomas Paine corpus: automated computer author attribution methodology applied to Thomas Paine’s writings. In: Cleary, S., Stabell, I. (eds.) New Directions in Thomas Paine Studies, edn. 1. Palgrave Macmillan, USA (2016). https://doi.org/10.1057/9781137589996_3
Petrovic, S., Berton, G., Schiaffino, R., Ivanov, L.: Authorship attribution of Thomas Paine works. In: Proceedings of the International Conference on Data Mining DMIN 2014, pp. 182–188 (2014). ISBN: 1-60132-267-4
Smith, M.W.A.: An investigation of Morton’s method to distinguish Elizabethan playwrights. Comput. Hum. 19, 3–21 (1985)
Sousa-Silva, R.: Detecting translingual plagiarism: a forensic linguistic contribution to computational processing (2016). http://www.uniweimar.de/medien/webis/events/pan-16
Stamatatos, E.: Authorship verification: a review of recent advances. Re. Comput. Sci. 123, 9–25 (2016)
Stamatatos, E.: A survey of modern authorship attribution methods. J. Am. Soc. Inform. Sci. Technol. 60(3), 538–556 (2009)
Tellez, E., Miranda-Jiménez, S., Graff, M., Moctezuma, D.: Gender and language-variety identification with MicroTC-PAN at CLEF 2017. In: Cappellato, L., et al. (eds.) CLEF 2017 Eval. Labs and Workshop, 17 September, Dublin, Ireland. CEUR-WS.org (2017). ISSN 1613–0073
University of California Irvine Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ivanov, L., Neilsen, B. (2019). Consonance as a Stylistic Feature for Authorship Attribution of Historical Texts. In: Ekštein, K. (eds) Text, Speech, and Dialogue. TSD 2019. Lecture Notes in Computer Science(), vol 11697. Springer, Cham. https://doi.org/10.1007/978-3-030-27947-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-27947-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27946-2
Online ISBN: 978-3-030-27947-9
eBook Packages: Computer ScienceComputer Science (R0)