Skip to main content

Towards Cyber-Physical Infrastructure as-a-Service (CPIaaS) in the Era of Industry 4.0

  • Conference paper
  • First Online:
Systems, Software and Services Process Improvement (EuroSPI 2019)

Abstract

The crucial role of resilience and interoperability in today’s highly dynamic cyber-physical systems (CPSs), where (timely) human intervention is limited, calls for a holistic vision that facilitates the autonomous orchestration of cyber-physical processes on the field-level. However, traditional automation and control systems are designed as static silos, which are generally configured once for a specific purpose. Hence, these systems lack the flexibility to efficiently adjust to dynamically changing system requirements, which includes the integration of heterogeneous devices and services on-request, or elastic features such as on-demand provisioning of computing and storage resources. In this work, we propose a reference architecture for implementing a cyber-physical infrastructure as-a-service (CPIaaS) framework. This framework is based on the concept of service-oriented virtualization and provides a level of flexibility and interoperability to CPS, that cannot be matched using traditional approaches for building highly integrated, cross-platform, inter-domain communication environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It should be noted, that the production-centric and operations-centric digital twin can be integrated into a single digital twin, or they can be kept separate, as shown in Fig. 2, which on the one hand increases the system modularity and on the other hand, reduces the complexity of each digital twin implementation and its maintenance.

References

  1. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004). https://doi.org/10.1109/TDSC.2004.2

    Article  Google Scholar 

  2. Bielefeldt, B., Hochhalter, J., Hartl, D.: Computationally efficient analysis of sma sensory particles embedded in complex aerostructures using a substructure approach (2016). https://doi.org/10.1115/smasis2015-8975

  3. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_1

    Chapter  Google Scholar 

  4. Duan, Q., Yan, Y., Vasilakos, A.V.: A survey on service-oriented network virtualization toward convergence of networking and cloud computing. IEEE Trans. Netw. Serv. Manage. 9(4), 373–392 (2012). https://doi.org/10.1109/TNSM.2012.113012.120310

    Article  Google Scholar 

  5. Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N.C., Hu, B.: Everything as a service (XaaS) on the cloud: origins, current and future trends. In: Proceedings - 2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015, pp. 621–628 (2015). https://doi.org/10.1109/CLOUD.2015.88

  6. Fischer, A., Botero, J.F., Beck, M.T., De Meer, H., Hesselbach, X.: Virtual network embedding: a survey. IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013). https://doi.org/10.1109/SURV.2013.013013.00155

    Article  Google Scholar 

  7. Hochhalter, J.D., et al.: Coupling damage-sensing particles to the digitial twin concept (2014). https://ntrs.nasa.gov/search.jsp?R=20140006408

  8. Laprie, J.C.: From dependability to resilience. In: International Conference on Dependable Systems and Networks, pp. G8–G9 (2008)

    Google Scholar 

  9. de Lemos, R., de Castro Guerra, P.A., Rubira, C.M.E.: A fault-tolerant architectural approach for dependable systems. IEEE Softw. 23(2), 80–87 (2006)

    Article  Google Scholar 

  10. Liu, Y., Wang, L., Vincent Wang, X.: Cloud manufacturing: latest advancements and future trends. Procedia Manuf. 25, 62–73 (2018). https://doi.org/10.1016/j.promfg.2018.06.058

    Article  Google Scholar 

  11. Mumtaz, S., Alsohaily, A., Pang, Z., Rayes, A., Tsang, K.F., Rodriguez, J.: Massive Internet of Things for industrial applications (2017). https://doi.org/10.13140/RG.2.1.3901.9609

  12. Negri, E., Fumagalli, L., Macchi, M.: A Review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11(June), 939–948 (2017). https://doi.org/10.1016/j.promfg.2017.07.198

    Article  Google Scholar 

  13. Pradhan, S., Otte, W., Dubey, A., Szabo, C., Gokhale, A., Karsai, G.: Towards a self-adaptive deployment and configuration infrastructure for cyber-physical systems (2014)

    Google Scholar 

  14. Rosen, R., Von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 28(3), 567–572 (2015). https://doi.org/10.1016/j.ifacol.2015.06.141

    Article  Google Scholar 

  15. Smarslok, B., Culler, A., Mahadevan, S.: Error quantification and confidence assessment of aerothermal model predictions for hypersonic aircraft (2012). https://doi.org/10.2514/6.2012-1817

  16. Sonkar, B., Chaphekar, D., Seetha, A.: Service driven approach towards future internet (2015)

    Google Scholar 

  17. Tao, F., Zhang, L., Venkatesh, V.C., Luo, Y., Cheng, Y.: Cloud manufacturing: a computing and service-oriented manufacturing model. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 225(10), 1969–1976 (2011). https://doi.org/10.1177/0954405411405575

    Article  Google Scholar 

  18. Tao, F., Cheng, J., Qi, Q., Zhang, M., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. J. Adv. Manuf. Technol. 94(9–112), 3563–3576 (2018). https://doi.org/10.1007/s00170-017-0233-1

    Article  Google Scholar 

  19. Tuegel, E.J., Ingraffea, A.R., Eason, T.G., Spottswood, S.M.: Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng. 2011, 1–14 (2011). https://doi.org/10.1155/2011/154798

    Article  Google Scholar 

  20. Wollschlaeger, M., Sauter, T., Jasperneite, J.: The future of industrial communication: automation networks in the era of the Internet of Things and industry 4.0. IEEE Ind. Electron. Mag. 11(1), 17–27 (2017). https://doi.org/10.1109/MIE.2017.2649104

    Article  Google Scholar 

  21. Xu, L.D., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Industr. Inf. 10(4), 2233–2243 (2014). https://doi.org/10.1109/TII.2014.2300753

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Dobaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobaj, J., Krisper, M., Macher, G. (2019). Towards Cyber-Physical Infrastructure as-a-Service (CPIaaS) in the Era of Industry 4.0. In: Walker, A., O'Connor, R., Messnarz, R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2019. Communications in Computer and Information Science, vol 1060. Springer, Cham. https://doi.org/10.1007/978-3-030-28005-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28005-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28004-8

  • Online ISBN: 978-3-030-28005-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics