Skip to main content

Highly Autonomous Vehicle (System) Design Patterns – Achieving Fail Operational and High Level of Safety and Security

  • Conference paper
  • First Online:
Systems, Software and Services Process Improvement (EuroSPI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1060))

Included in the following conference series:

Abstract

Highly autonomous vehicles will have no steering wheel, will not need a driver interaction and will have some new design strategies to allow self-driving of vehicles. This paper will take a look at design patterns which are implemented in recent car developments and which are used to release self-driving cars to the road. To reach fail operational architectures different car manufacturers invest into new car models and governments in Germany and USA currently work on a new insurance law where not drivers but cars are assured. In this paper we come up with a first list of highly autonomous vehicle (system) design patterns which will evolve over the next years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Automotive SPICE© 3.1: Process Assessment Model, VDA QMC Working Group 13/Automotive SIG, November 2017

    Google Scholar 

  2. Automotive SPICE© Guidelines, 2nd edn., VDA QMC Working Group 13, November 2017

    Google Scholar 

  3. Riel, A., Kreiner, C., Messnarz, R., Much, A.: An architectural approach to the integration of safety and security requirements in smart products and systems design. CIRP Ann. 67(1), 173–176 (2018)

    Google Scholar 

  4. Riel, A., et al.: EU Project SafEUr – competence requirements for functional safety managers. In: Winkler, D., O’Connor, Rory V., Messnarz, R. (eds.) EuroSPI 2012. CCIS, vol. 301, pp. 253–265. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31199-4_22

    Chapter  Google Scholar 

  5. Riel, A., Tichkiewitch, S., Messnarz, R.: The profession of integrated engineering: formation and certification on a European level. Acad. J. Manuf. 6, 1–9 (2008)

    Google Scholar 

  6. Riel, A., Draghici, A., Draghici, G., Grajewski, D., Messnarz, R.: Process and product innovation needs integrated engineering collaboration skills. J. Softw. Evol. Process 24(5), 551–560 (2012)

    Google Scholar 

  7. Höhn, H., Sechser, B., Dussa-Zieger, K., Messnarz, R., Hindel, B.: Software Engineering nach Automotive SPICE: Entwicklungsprozesse in der Praxis-Ein Continental-Projekt auf dem Weg zu Level 3, Kapitel: Systemdesign, dpunkt. Verlag (2015)

    Google Scholar 

  8. ISO - International Organization for Standardization. ISO 26262 Road vehicles Functional Safety Part 1-10 (2011)

    Google Scholar 

  9. ISO – International Organization for Standardization. ISO CD 26262-2018 2nd Edition Road vehicles Functional Safety (to appear)

    Google Scholar 

  10. ISO/SAE 21434, Road vehicles – Cybersecurity engineering, ISO and SAE, Committee Draft (CD) (2018)

    Google Scholar 

  11. KGAS, Konzerngrundanforderungen Software, Version 3.2, Volkswagen LAH 893.909: KGAS_3602, KGAS_3665, KGAS_3153, KGAS_3157, November 2018

    Google Scholar 

  12. Kreiner, C., Messnarz, R., Riel, A., et al.: The AQUA automotive sector skills alliance: best practice in an integrated engineering approach. Softw. Qual. Prof. 17(3), 35–45 (2015)

    Google Scholar 

  13. Messnarz, R., et al.: Integrating functional safety, automotive SPICE and six sigma – the AQUA knowledge base and integration examples. In: Barafort, B., O’Connor, R.V., Poth, A., Messnarz, R. (eds.) EuroSPI 2014. CCIS, vol. 425, pp. 285–295. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43896-1_26

    Chapter  Google Scholar 

  14. Kreiner, C., et al.: Automotive knowledge alliance AQUA – integrating automotive SPICE, six sigma, and functional safety. In: McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364, pp. 333–344. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39179-8_30

    Chapter  Google Scholar 

  15. Macher, G., Sporer, H., Brenner, E., Kreiner, C.: Supporting cyber-security based on hardware-software interface definition. In: Kreiner, C., O’Connor, R., Poth, A., Messnarz, R. (eds.) EuroSPI 2016. CCIS, vol. 633, pp. 148–159. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44817-6_12

    Chapter  Google Scholar 

  16. Macher, G., Messnarz, R., Kreiner, C., et. al.: Integrated Safety and Security Development in the Automotive Domain, Working Group 17AE-0252/2017-01-1661, SAE International, June 2017

    Google Scholar 

  17. Macher, G., Much, A., Riel, A., Messnarz, R., Kreiner, C.: Automotive SPICE, safety and cybersecurity integration. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 273–285. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66284-8_23

    Chapter  Google Scholar 

  18. Messnarz, R., Kreiner, C., Macher, G., Walker, A.: Extending automotive SPICE 3.0 for the use in ADAS and future self-driving service architectures. J. Softw.: Evol. Process 30(5), e1948 (2018)

    Google Scholar 

  19. Messnarz, R., Kreiner, C., Riel, A.: Integrating automotive SPICE, functional safety, and cybersecurity concepts: a cybersecurity layer model. Softw. Qual. Prof. 18(4), 13–23 (2016)

    Google Scholar 

  20. Messnarz, R., Spork, G., Riel, A., Tichkiewitch, S.: Dynamic learning organisations supporting knowledge creation for competitive and integrated product design. In: Proceedings of the 19th CIRP Design Conference – Competitive Design, 30–31 March 2009, p. 104. Cranfield University (2009)

    Google Scholar 

  21. Messnarz, R., Kreiner, C., Riel, A., et al.: Implementing functional safety standards has an impact on system and SW design - required knowledge and competencies (SafEUr). Softw. Qual. Prof. 17(3) (2015)

    Google Scholar 

  22. Messnarz, R., et al.: Implementing functional safety standards – experiences from the trials about required knowledge and competencies (SafEUr). In: McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364, pp. 323–332. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39179-8_29

    Chapter  Google Scholar 

  23. Messnarz, R., Sehr, M., Wüstemann, I., Humpohl, J., Ekert, D.: Experiences with SQIL – SW quality improvement leadership approach from Volkswagen. In: Stolfa, J., Stolfa, S., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2017. CCIS, vol. 748, pp. 421–435. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64218-5_35

    Chapter  Google Scholar 

  24. Messnarz, R., König, F., Bachmann, V.O.: Experiences with trial assessments combining automotive SPICE and functional safety standards. In: Winkler, D., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2012. CCIS, vol. 301, pp. 266–275. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31199-4_23

    Chapter  Google Scholar 

  25. Messnarz, R., Much, A., Kreiner, C., Biro, M., Gorner, J.: Need for the continuous evolution of systems engineering practices for modern vehicle engineering. In: Stolfa, J., Stolfa, S., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2017. CCIS, vol. 748, pp. 439–452. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64218-5_36

    Chapter  Google Scholar 

  26. Much, A.: Automotive security: challenges, standards and solutions. Softw. Qual. Prof. 18(4), 4–12 (2016)

    Google Scholar 

  27. SAE J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle Systems, SAE - Society of Automotive Engineers, USA, January 2016

    Google Scholar 

  28. SOQRATES: Task Forces Developing Integration of Automotive SPICE, ISO 26262 and SAE J3061. http://soqrates.eurospi.net/

  29. Stolfa, J., et al.: Automotive quality universities - AQUA Alliance extension to higher education. In: Kreiner, C., O’Connor, R.V., Poth, A., Messnarz, R. (eds.) EuroSPI 2016. CCIS, vol. 633, pp. 176–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44817-6_14

    Chapter  Google Scholar 

  30. Korsaa, M., et al.: The SPI Manifesto and the ECQA SPI manager certification scheme. J. Softw.: Evol. Process 24(5), 525–540 (2012)

    Google Scholar 

  31. Korsaa, M., et al.: The people aspects in modern process improvement management approaches. J. Softw.: Evol. Process 25(4), 381–391 (2013)

    Google Scholar 

  32. Messnarz, R., et al.: Social responsibility aspects supporting the success of SPI. J. Softw.: Evol. Process 26(3), 284–294 (2014)

    Google Scholar 

  33. GEAR 2030: European Commission, Commission launches GEAR 2030 to boost competitiveness and growth in the automotive sector (2016). http://ec.europa.eu/growth/tools-databases/newsroom/cf/itemdetail.cfm?item_id=8640

  34. Bratzel, S.: Kautschuk Gummi Kunststoffe 03, 10–11 (2019)

    Google Scholar 

  35. https://en.wikipedia.org/wiki/Systems_engineering. Accessed 2 Apr 2019

  36. https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level. Accessed 2 Apr 2019

  37. EP0501227B1 (1991)

    Google Scholar 

  38. Giese, U.: aktiv 3, p. 3, 9 March 2019

    Google Scholar 

  39. Kunststoffe im Auto –was geht noch? GAK 4/2013 Jg. 66, pp. 248–258

    Google Scholar 

  40. http://www.zeit.de/auto/2010-06/elektroauto-strom-foerderung. Accessed 2 Apr 2019

  41. Reina, G.: Tyre pressure monitoring using a dynamical model-based estimator. Veh. Syst. Dyn.: 29 (2015). https://doi.org/10.1080/00423114.2015.1008017

    Google Scholar 

  42. McIntosh, J.: Run-Flats vs Self-Sealing Tires. Autotrader Canada, 24 October 2017. Accessed 15 Feb 2019

    Google Scholar 

  43. http://2018.eurospi.net/index.php/manifesto. Accessed 2 Apr 2019

  44. https://www.energie-lexikon.info/rollwiderstand.html. Accessed 6 Apr 2019

  45. EU Blueprint Project DRIVES. https://www.project-drives.eu/. Accessed 2 Apr 2019

  46. GEAR 2030: High Level Group on the Competitiveness and Sustainable Growth of the Automotive Industry in the European Union (2017)

    Google Scholar 

  47. European Sector Skill Council: Report, Eu Skill Council Automotive Industry (2013)

    Google Scholar 

  48. Record decline in teenagers learning to drive, figures show. https://www.telegraph.co.uk/news/2017/07/10/record-decline-teenagers-learning-drive-figures-show/. Accessed 19 Apr 2019

  49. What Explains the Decline in Driving Among Young People? https://usa.streetsblog.org/2017/03/29/what-explains-the-decline-in-driving-among-young-people/. Accessed 19 Apr 2019

  50. Driving habits by generation, Boomers to Gen Z. https://www.centralpennparent.com/2018/driving-habits-by-generation-boomers-to-gen-z/. Accessed 19 Apr 2019

  51. Automotive Information Sharing and Analysis Center AUTO-ISAC: Automotive Cybersecurity Best Practices Executive Summary (2016)

    Google Scholar 

  52. Brown, D., et al.: Automotive Security Best Practices, White Paper (2015)

    Google Scholar 

  53. Hahn, T., et al.: IBM Point of View: Internet of Things Security (2015)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the European Commission which has funded the BLUEPRINT project DRIVES (2018–2021) [45]. In this case the publications reflect the views only of the author(s), and the Commission cannot be held responsible for any use, which may be made of the information contained therein. We are grateful to the EU ELIC project where materials to understand the functional design of e-powertrains has been developed for teaching in schools. Parts of that material have been used for one of the examples. We are grateful to a working party of Automotive suppliers SOQRATES (www.soqrates.de) [28] who exchange knowledge about such future design principles. This includes: Alastair Walker (LORIT), Alexander Much (Elektrobit), Frank König, Martin Dallinger, Thomas Wegner (ZF Friedrichshafen AG), Armin Riess (BBraun), Dietmar Kinalzyk (HELLA), Ralf Mayer (BOSCH Engineering), Gerhard Griessnig (AVL), Andreas Gruber (ZKW), Rainer Dreves, Ivan Sokic, Stephan Habel (Continental), Christian Schlager, Thomas Stiglhuber, Irrenka Mandic (Magna Powertrain ECS), Andreas Riel (ISCN/Grenoble INP), Helmut Zauchner, Christoph Karner (KTM), Andreas Gruber (ZKW), Georg Macher (TU Graz), Bernhard Sechser (Methodpark), Lutz Haunert (G&D), Damjan Ekert (ISCN), Richard Messnarz (ISCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Messnarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Messnarz, R., Macher, G., Stolfa, J., Stolfa, S. (2019). Highly Autonomous Vehicle (System) Design Patterns – Achieving Fail Operational and High Level of Safety and Security. In: Walker, A., O'Connor, R., Messnarz, R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2019. Communications in Computer and Information Science, vol 1060. Springer, Cham. https://doi.org/10.1007/978-3-030-28005-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28005-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28004-8

  • Online ISBN: 978-3-030-28005-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics