Skip to main content

Artificial Intelligence Helps Making Quality Assurance Processes Leaner

  • Conference paper
  • First Online:
Systems, Software and Services Process Improvement (EuroSPI 2019)

Abstract

Lean processes focus on doing only necessary things in an efficient way. Artificial intelligence and Machine Learning offer new opportunities to optimizing processes. The presented approach demonstrates an improvement of the test process by using Machine Learning as a support tool for test management. The scope is the semi-automation of the selection of regression tests. The proposed lean testing process uses Machine Learning as a supporting machine, while keeping the human test manager in charge of the adequate test case selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: an empirical study. In: International Conference on Software Maintenance and Evolution, pp. 179–189 (1999)

    Google Scholar 

  2. Gligoric, M., Eloussi, L., Marinov, D.: Practical regression test selection with dynamic file dependencies. In: International Symposium on Software Testing and Analysis, pp. 211–222 (2015)

    Google Scholar 

  3. Zhang, L.: Hybrid regression test selection. In: Proceedings of the 40th International Conference on Software Engineering (ICSE 2018), pp. 199–209. ACM, New York (2018). https://doi.org/10.1145/3180155.3180198

  4. Henard, C., Mike, P., Harman, M., Jia, Y., Le Traon, Y.: Comparing white-box and black-box test prioritization. In: Proceedings of the 38th International Conference on Software Engineering (ICSE 2016), pp. 523–534. ACM, New York (2016). https://doi.org/10.1145/2884781.2884791

  5. Miranda, B., Cruciani, E., Verdecchia, R., Bertolino, A.: FAST approaches to scalable similarity-based test case prioritization. In: Proceedings of the 40th International Conference on Software Engineering (ICSE 2018), pp. 222–232. ACM, New York (2018). https://doi.org/10.1145/3180155.3180210

  6. Liang, J., Elbaum, S., Rothermel, G.: Redefining prioritization: continuous prioritization for continuous integration, pp. 688–698 (2018). https://doi.org/10.1145/3180155.3180213

  7. Lachmann, R., Schulze, S., Nieke, M., Seidl, C., Schaefer, I.: System-level test case prioritization using machine learning, pp. 361–368 (2016). https://doi.org/10.1109/icmla.2016.0065

  8. https://www.asme.org/engineering-topics/articles/manufacturing-design/5-lean-principles-every-should-know

  9. https://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

  10. Ohno, T.: Toyota Production System – Beyond Large-Scale Production. Productivity Press, Cambridge (1988)

    Google Scholar 

  11. Boden, M.A.: Creativity and artificial intelligence (1999). https://doi.org/10.1016/s0004-3702(98)00055-1

    Article  MathSciNet  Google Scholar 

  12. Wang, F., Yang, S.C., Yang, Y.L.: Regression testing based on neural networks and program slicing techniques. In: Wang, Y., Li, T. (eds.) Practical Applications of Intelligent Systems. AINSC, vol. 124, pp. 409–418. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-25658-5_50

    Chapter  Google Scholar 

  13. Agarwal, D., Tamir, D., Last, M., Kandel, A.: A comparative study of artificial neural networks and info-fuzzy networks as automated oracles in software testing. IEEE Trans. Syst. Man Cybern-Part A: Syst. Hum. 42(5), 1183–1193 (2012)

    Article  Google Scholar 

  14. Engstrom, E., Runeson, P., Skoglund, M.: A systematic review on regression test selection techniques. Inf. Softw Technol. 52, 14–30 (2010)

    Article  Google Scholar 

  15. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2010). ISBN-13: 978-0136042594

    MATH  Google Scholar 

  16. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression testing. IEEE Trans. Soft. Eng. 27(10), 929–948 (2001)

    Article  Google Scholar 

  17. Korsaa, M., et al.: The SPI Manifesto and the ECQA SPI manager certification scheme. J. Softw.: Evol. Process 24(5), 525–540 (2012)

    Google Scholar 

  18. Messnarz, R., et al.: Social responsibility aspects supporting the success of SPI. J. Softw.: Evol. Process 26(3), 284–294 (2014)

    Google Scholar 

  19. Sanchez-Gordon, M.L., Colomo-Palacios, R., Amescua, A.: Towards measuring the impact of the SPI manifesto: a systematic review. In: Proceedings of European System and Software Process Improvement and Innovation Conference, pp. 100–110 (2013)

    Google Scholar 

  20. scikit-learn.org

  21. http://dlib.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Poth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poth, A., Beck, Q., Riel, A. (2019). Artificial Intelligence Helps Making Quality Assurance Processes Leaner. In: Walker, A., O'Connor, R., Messnarz, R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2019. Communications in Computer and Information Science, vol 1060. Springer, Cham. https://doi.org/10.1007/978-3-030-28005-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28005-5_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28004-8

  • Online ISBN: 978-3-030-28005-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics