Abstract
The analysis of equilibria of ordinary differential equations (ODEs) that represent biochemical reaction networks is crucial in order to understand various functional properties of regulation in systems biology. In this paper, we develop a numerical algorithm to compute equilibria under the assumption that the regulatory network satisfies certain graph-theoretic conditions which lead to fixed-point iterations over an anti-monotonic function. Unlike generic approaches based on Netwon’s method, our algorithm does not require the availability of the Jacobian of the ODE vector field, which may be expensive when the dimensionality of the system is large. More important, it produces an estimation (through over-approximation) of the entire set of equilibria, with the guarantee of yielding the unique equilibrium of the ODE in the case that the returned set is a singleton. We demonstrate the applicability of our algorithm to two signaling pathways of MAPK and EGFR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angeli, D., De Leenheer, P., Sontag, E.: Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates. J. Math. Biol. 61(4), 581–616 (2010)
Angeli, D., Ferrell, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. 101(7), 1822–1827 (2004)
Angeli, D., Sontag, E.D.: Multi-stability in monotone input/output systems. Syst. Control Lett. 51(3–4), 185–202 (2004)
Bianconi, F., Baldelli, E., Ludovini, V., Crinò, L., Flacco, A., Valigi, P.: Computational model of EGFR and IGF1R pathways in lung cancer: a systems biology approach for translational oncology. Biotechnol. Adv. 30(1), 142–153 (2012)
Brown, K.S., et al.: The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys. Biol. 1(3), 184 (2004)
Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical reaction networks: a categorical and algorithmic perspective. In: LICS, pp. 485–494 (2016)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: POPL, pp. 137–150 (2016)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. Proc. Natl. Acad. Sci. (PNAS) 114(38), 10029–10034 (2017)
Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving stabilization of biological systems. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 134–149. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_11
Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: LICS, pp. 362–381 (2010)
Enciso, G., Smith, H., Sontag, E.: Nonmonotone systems decomposable into monotone systems with negative feedback. J. Differ. Equ. 224(1), 205–227 (2006)
Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. 106(16), 6453–6458 (2009)
Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston Jr., N.G.: Crossing the Hopf bifurcation in a live predator-prey system. Science 290(5495), 1358–1360 (2000)
Gilbert, D., et al.: Computational methodologies for modelling, analysis and simulation of signalling networks. Brief. Bioinform. 7(4), 339–353 (2006)
Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_31
Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267(6), 1583–1588 (2000)
Kitano, H.: Biological robustness. Nat. Rev. Genet. 5, 826 (2004)
Knoll, D., Keyes, D.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)
Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164(3), 353–359 (2004)
Orton, R.J., Adriaens, M.E., Gormand, A., Sturm, O.E., Kolch, W., Gilbert, D.R.: Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway. BMC Syst. Biol. 3(1), 100 (2009)
Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., Kolch, W.: Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J. 392(2), 249–261 (2005)
Pappalardo, F., et al.: Computational modeling of PI3K/AKT and MAPK signaling pathways in melanoma cancer. PLoS ONE 11(3), e0152104 (2016)
Radde, N.: Fixed point characterization of biological networks with complex graph topology. Bioinformatics 26(22), 2874–2880 (2010)
Radde, N.: Analyzing fixed points of intracellular regulation networks with interrelated feedback topology. BMC Syst. Biol. 6(1), 57 (2012)
Tyson, J.J., Novák, B.: Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem. 61(1), 219–240 (2010). pMID: 20055671
Vaudry, D., Stork, P., Lazarovici, P., Eiden, L.: Signaling pathways for PC12 cell differentiation: making the right connections. Science 296(5573), 1648–1649 (2002)
Volinsky, N., Kholodenko, B.N.: Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb. Perspect. Biol. 5(8), a009043 (2013)
Acknowledgments
The authors thank the anonymous reviewers for helpful comments. Max Tschaikowski is supported by a Lise Meitner Fellowship funded by the Austrian Science Fund (FWF) under grant number M-2393-N32 (COCO).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pérez-Verona, I.C., Tribastone, M., Tschaikowski, M. (2019). Fixed-Point Computation of Equilibria in Biochemical Regulatory Networks. In: Češka, M., Paoletti, N. (eds) Hybrid Systems Biology. HSB 2019. Lecture Notes in Computer Science(), vol 11705. Springer, Cham. https://doi.org/10.1007/978-3-030-28042-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-28042-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28041-3
Online ISBN: 978-3-030-28042-0
eBook Packages: Computer ScienceComputer Science (R0)