Abstract
The population size has a very strong impact on the efficiency, solution quality, and computational cost in a Swarm Intelligence (SI). In Ant Colony System algorithm, and as a Swarm Intelligence and population size based algorithm, the number of ants plays a very important role in directing the colony toward a high quality solution within a reasonable time. In this paper, a Fuzzy Logic strategy for adjusting the number of ants during runtime is presented. The based indicators for this adjustment are: Iteration and Convergence Rate. Some experiments are conducted using Travelling Salesman Problems, and results show that modifying the number of ants has a crucial effect on the performance of the Ant Colony System algorithm especially on the quality of solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: an autocatalytic optimizing process (1991)
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)
Bouzbita, S., El Afia, A., Faizi, R.: A novel based hidden markov model approach for controlling the ACS-TSP evaporation parameter. In: 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), pp. 633–638. IEEE (2016)
Bouzbita, S., El Afia, A., Faizi, R., Zbakh, M.: Dynamic adaptation of the ACS-TSP local pheromone decay parameter based on the hidden markov model. In: 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech), pp. 344–349. IEEE (2016)
Bouzbita, S., El Afia, A., Faizi, R.: Hidden markov model classifier for the adaptive ACS-TSP pheromone parameters. In: Talbi, E.-G., Nakib, A. (eds.) Bioinspired Heuristics for Optimization. SCI, vol. 774, pp. 153–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95104-1_10
Lalaoui, M., El Afia, A., Chiheb, R.: Hidden markov model for a self-learning of simulated annealing cooling law. In: 5th International Conference on Multimedia Computing and Systems (ICMCS) (2016)
Lalaoui, M., El Afia, A., Chiheb, R.: A self-tuned simulated annealing algorithm using hidden markov model. Int. J. Electr. Comput. Eng. 8(1), 291–298 (2018)
Lalaoui, M., El Afia, A., Chiheb, R.: A self-adaptive very fast simulated annealing based on hidden markov model. In: 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech) (2017)
Aoun, O., Sarhani, M., El Afia, A.: Investigation of hidden markov model for the tuning of metaheuristics in airline scheduling problems. IFAC-PapersOnLine 49(3), 347–352 (2016)
Aoun, O., Sarhani, M., Afia, A.E.: Hidden markov model classifier for the adaptive particle swarm optimization. In: Amodeo, L., Talbi, E.-G., Yalaoui, F. (eds.) Recent Developments in Metaheuristics. ORSIS, vol. 62, pp. 1–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-58253-5_1
El Afia, A., Sarhani, M., Aoun, O.: Hidden markov model control of inertia weight adaptation for particle swarm optimization. IFAC-PapersOnLine 50(1), 9997–10002 (2017)
El Afia, A., Aoun, O., Garcia, S.: Adaptive cooperation of multi-swarm particle swarm optimizer-based hidden markov model. Prog. Artif. Intell. 8, 1–12 (2019)
El Afia, A., Lalaoui, M., Chiheb, R.: A self controlled simulated annealing algorithm using hidden markov model state classification. Procedia Comput. Sci. 148, 512–521 (2019)
Bouzbita, S., El Afia, A., Faizi, R.: Parameter adaptation for ant colony system algorithm using hidden markov model for TSP problems. In: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, p. 6. ACM (2018)
Kabbaj, M.M., El Afia, A.: Towards learning integral strategy of branch and bound. In: 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), pp. 621–626. IEEE (2016)
El Afia, A., Kabbaj., M.M.: Supervised learning in branch-and-cut strategies. In: Proceedings of the 2nd International Conference on Big Data, Cloud and Applications, p. 114. ACM (2017)
Kabbaj, M.M., El Afia, A.: Adapted branch-and-bound algorithm using SVM with model selection. Int. J. Electr. Comput. Eng. (IJECE) 9(4), 2481–2490 (2019)
Aoun, O., El Afia, A., Garcia, S.: Self inertia weight adaptation for the particle swarm optimization. In: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, p. 8. ACM (2018)
Alobaedy, M.M., Khalaf, A.A., Muraina, I.D.: Analysis of the number of ants in ant colony system algorithm. In: 2017 5th International Conference on Information and Communication Technology (ICoIC7), pp. 1–5. IEEE (2017)
Siemiński, A.: Using hyper populated ant colonies for solving the TSP. Vietnam J. Comput. Sci. 3(2), 103–117 (2016)
Liu, Y., Liu, J., Li, X., Zhang, Z.: A self-adaptive control strategy of population size for ant colony optimization algorithms. In: Tan, Y., Shi, Y., Niu, B. (eds.) Advances in Swarm Intelligence. LNCS, vol. 9712, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41000-5_44
Liu, F., Zhong, J., Liu, C., Gao, C., Li, X.: A novel strategy of initializing the population size for ant colony optimization algorithms in TSP. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 249–253. IEEE (2017)
Fidanova, S., Marinov, P.: Number of ants versus number of iterations on ant colony optimization algorithm for wireless sensor layout. In: Proceedings of the Workshop of ICT for New Materials and Nanotechnologies, Bankya, pp. 90–93 (2013)
Bai, Y., Wang, D.: Fundamentals of fuzzy logic control—fuzzy sets, fuzzy rules and defuzzifications. In: Bai, Y., Zhuang, H., Wang, D. (eds.) Advanced Fuzzy Logic Technologies in Industrial Applications. Advances in Industrial Control, pp. 17–36. Springer, London (2006). https://doi.org/10.1007/978-1-84628-469-4_2
El Afia, A., Bouzbita, S., Faizi, R.: The effect of updating the local pheromone on ACS performance using fuzzy logic. Int. J. Electr. Comput. Eng. (IJECE) 7(4), 2161–2168 (2017)
Olivas, F., Valdez, F., Castillo, O.: Ant colony optimization with parameter adaptation using fuzzy logic for TSP problems. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization. SCI, vol. 601, pp. 593–603. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17747-2_45
Neyoy, H., Castillo, O., Soria, J.: Dynamic fuzzy logic parameter tuning for ACO and its application in TSP problems. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems. Studies in Computational Intelligence, vol. 451, pp. 259–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33021-6_21
Lalaoui, M., El Afia, A., Chiheb, R.: Simulated annealing with adaptive neighborhood using fuzzy logic controller. In: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, p. 7. ACM (2018)
Amir, C., Badr, A., Farag, I.: A fuzzy logic controller for ant algorithms. Comput. Inf. Syst. 11(2), 26 (2007)
Olivas, F., Valdez, F., Castillo, O., Gonzalez, C.I., Martinez, G., Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)
Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bouzbita, S., El Afia, A., Faizi, R. (2019). Adjusting Population Size of Ant Colony System Using Fuzzy Logic Controller. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11684. Springer, Cham. https://doi.org/10.1007/978-3-030-28374-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-28374-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28373-5
Online ISBN: 978-3-030-28374-2
eBook Packages: Computer ScienceComputer Science (R0)