Skip to main content

Apartment Valuation Models for a Big City Using Selected Spatial Attributes

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Abstract

This paper addresses a property valuation problem with machine learning models with pre-selection of attributes. The study aimed to examine to what extent the environmental attributes influenced real estate prices. Real-world data about purchase and sale transactions derived from a cadastral system and registry of real estate transactions in one of Polish big cities were employed in the experiments. Machine learning models were built using basic attributes of apartments and environmental ones taken from cadastral maps. Five market segmentations were made including administrative cadastral regions of a city and quality zones delineated by an expert, and classes of apartments. Feature selection was accomplished and property valuation models were built for each division of a city area. The study allowed also for a comparative analysis of performance of ensemble learning techniques applied to construct predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  2. De Nadai, M., Lepri, B.: The economic value of neighborhoods: predicting real estate prices from the urban environment. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 323–330. IEEE (2018)

    Google Scholar 

  3. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  4. Erevelles, S., Fukawa, N., Swayne, L.: Big Data consumer analytics and the transformation of marketing. J. Bus. Res. 69(2), 897–904 (2016)

    Article  Google Scholar 

  5. Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270(2), 654–669 (2018)

    Article  MathSciNet  Google Scholar 

  6. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manag. 35(2), 137–144 (2015)

    Article  Google Scholar 

  7. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  8. Kok, N., Koponen, E.L., Martínez-Barbosa, C.A.: Big data in real estate? From manual appraisal to automated valuation. J. Portf. Manag. 43(6), 202–211 (2017)

    Article  Google Scholar 

  9. Lasota, T., Łuczak, T., Trawiński, B.: Investigation of rotation forest method applied to property price prediction. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7267, pp. 403–411. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29347-4_47

    Chapter  Google Scholar 

  10. Lasota, T., Mazurkiewicz, J., Trawiński, B., Trawiński, K.: Comparison of data driven models for the valuation of residential premises using keel. Int. J. Hybrid Intell. Syst. 7(1), 3–16 (2010)

    Article  Google Scholar 

  11. Lasota, T., Sawiłow, E., Trawiński, B., Roman, M., Marczuk, P., Popowicz, P.: A method for merging similar zones to improve intelligent models for real estate appraisal. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS (LNAI), vol. 9011, pp. 472–483. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15702-3_46

    Chapter  Google Scholar 

  12. Lasota, T., Telec, Z., Trawinski, B., Trawinski, G.: Evaluation of random subspace and random forest regression models based on genetic fuzzy systems. In: KES, pp. 88–97 (2012)

    Google Scholar 

  13. Lasota, T., Telec, Z., Trawinski, B., Trawinski, K.: Investigation of the ets evolving fuzzy systems applied to real estate appraisal. Mult.-Valued Log. Soft Comput. 17(2–3), 229–253 (2011)

    Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  15. Leung, M.K., Delong, A., Alipanahi, B., Frey, B.J.: Machine learning in genomic medicine: a review of computational problems and data sets. Proc. IEEE 104(1), 176–197 (2015)

    Article  Google Scholar 

  16. Li, J., Tao, F., Cheng, Y., Zhao, L.: Big Data in product lifecycle management. Int. J. Adv. Manuf. Technol. 81(1–4), 667–684 (2015)

    Article  Google Scholar 

  17. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 94 (2018)

    Google Scholar 

  18. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16(6), 321 (2015)

    Article  Google Scholar 

  19. Lötsch, J., et al.: Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy. Breast Cancer Res. Treat. 171(2), 399–411 (2018)

    Article  Google Scholar 

  20. Malinowski, A., Piwowarczyk, M., Telec, Z., Trawiński, B., Kempa, O., Lasota, T.: An approach to property valuation based on market segmentation with crisp and fuzzy clustering. In: Nguyen, N.T., Pimenidis, E., Khan, Z., Trawiński, B. (eds.) ICCCI 2018. LNCS (LNAI), vol. 11055, pp. 534–548. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98443-8_49

    Chapter  Google Scholar 

  21. Polikar, R.: Ensemble learning. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning, pp. 1–34. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-9326-7_1

    Chapter  Google Scholar 

  22. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)

    Article  Google Scholar 

  23. Sylla, M., Lasota, T., Szewrański, S.: Valuing environmental amenities in peri-urban areas: evidence from poland. Sustainability 11(3), 570 (2019)

    Article  Google Scholar 

  24. Trawiński, B., Lasota, T., Kempa, O., Telec, Z., Kutrzyński, M.: Comparison of ensemble learning models with expert algorithms designed for a property valuation system. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10448, pp. 317–327. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67074-4_31

    Chapter  Google Scholar 

  25. Trawiński, B., Smetek, M., Telec, Z., Lasota, T.: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. Int. J. Appl. Math. Comput. Sci. 22(4), 867–881 (2012). https://doi.org/10.2478/v10006-012-0064-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Trawiński, B., et al.: Comparison of expert algorithms with machine learning models for real estate appraisal. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 51–54. IEEE (2017)

    Google Scholar 

  27. Vafeiadis, T., Diamantaras, K.I., Sarigiannidis, G., Chatzisavvas, K.C.: A comparison of machine learning techniques for customer churn prediction. Simul. Model. Pract. Theory 55, 1–9 (2015)

    Article  Google Scholar 

  28. Voyant, C., et al.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017)

    Article  Google Scholar 

  29. Webb, S.: Deep learning for biology. Nature 554(7693), 555–557 (2018)

    Article  Google Scholar 

  30. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Trawiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Talaga, M., Piwowarczyk, M., Kutrzyński, M., Lasota, T., Telec, Z., Trawiński, B. (2019). Apartment Valuation Models for a Big City Using Selected Spatial Attributes. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics