Skip to main content

Valuation of Building Plots in a Rural Area Using Machine Learning Approach

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Abstract

Among many factors influencing the prices of building plots in rural areas, one can distinguish location factors related to the proximity and availability of many public services and transport hubs, as well as environmental factors, which are mainly related to the proximity of forests, parks or rivers. This paper examines how strongly such attributes of a property influence its price in rural areas. The experiments were carried out using top-notch machine learning methods and real-world data derived from the real estate price register and publicly available geographical data sets. The study showed that environmental features of building plots in a rural area had rather a small impact on their prices whereas location features turned out to be more important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lasota, T., Sawiłow, E., Trawiński, B., Roman, M., Marczuk, P., Popowicz, P.: A method for merging similar zones to improve intelligent models for real estate appraisal. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS (LNAI), vol. 9011, pp. 472–483. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15702-3_46

    Chapter  Google Scholar 

  2. Lasota, T., et al.: Enhancing intelligent property valuation models by merging similar cadastral regions of a municipality. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9330, pp. 566–577. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24306-1_55

    Chapter  Google Scholar 

  3. Malinowski, A., Piwowarczyk, M., Telec, Z., Trawiński, B., Kempa, O., Lasota, T.: An approach to property valuation based on market segmentation with crisp and fuzzy clustering. In: Nguyen, N.T., Pimenidis, E., Khan, Z., Trawiński, B. (eds.) ICCCI 2018. LNCS (LNAI), vol. 11055, pp. 534–548. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98443-8_49

    Chapter  Google Scholar 

  4. Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T., French, N.: Real estate appraisal: a review of valuation methods. J. Prop. Invest. Finance 21(4), 383–401 (2003)

    Article  Google Scholar 

  5. Peterson, S., Flangan, A.B.: Neural network hedonic pricing models in mass real estate appraisal. J. R. Estate Res. 31(2), 147–164 (2009)

    Google Scholar 

  6. Zhang, C., Fang, J., Yu, T.: A study of real estate demanding index based on massive website log data. In: Proceedings of the 2018 9th International Conference on E-business, Management and Economics, pp. 55–59. ACM (2018)

    Google Scholar 

  7. Tita, G.E., Petras, T.L., Greenbaum, R.T.: Crime and residential choice: a neighborhood level analysis of the impact of crime on housing prices. J. Quant. Criminol. 22(4), 299 (2006)

    Article  Google Scholar 

  8. Anderson Jr., R.J., Crocker, T.D.: Air pollution and residential property values. Urban Stud. 8(3), 171–180 (1971)

    Article  Google Scholar 

  9. Trawiński, B., Lasota, T., Kempa, O., Telec, Z., Kutrzyński, M.: Comparison of ensemble learning models with expert algorithms designed for a property valuation system. In: Nguyen, N.T., Papadopoulos, George A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10448, pp. 317–327. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67074-4_31

    Chapter  Google Scholar 

  10. Trawiński, B., et al.: Comparison of expert algorithms with machine learning models for a real estate appraisal system. In: The 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications INISTA 2017. IEEE (2017). https://doi.org/10.1109/inista.2017.8001131

  11. Haines-Young, R., Potschin, M.: The links between biodiversity, ecosystem services human well-being. In: Raffaelli, D.G., Frid, C.L.J. (eds.) Ecosystem Ecology: A New Synthesis, pp. 110–139. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  12. Sylla, M., Lasota, T., Szewrański, S.: Valuing environmental amenities in peri-urban areas: evidence from Poland. Sustainability 11(3), 1–15 (2019)

    Article  Google Scholar 

  13. De Nadai, M., Lepri, B.: The economic value of neighborhoods: predicting real estate prices from the urban environment. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 323–330. IEEE (2018)

    Google Scholar 

  14. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)

    Article  Google Scholar 

  15. Kazienko, P., Lughofer, E., Trawiński, B.: Hybrid and ensemble methods in machine learning. J. Univers. Comput. Sci. 19(4), 457–461 (2013)

    Google Scholar 

  16. Solecka, I., Sylla, M., Świąder, M.: Urban sprawl impact on Farmland conversion in suburban area of Wroclaw, Poland. In: IOP Conference Series: Materials Science and Engineering, vol. 245, no. 7 (2017). https://doi.org/10.1088/1757-899x/245/7/072002

    Article  Google Scholar 

  17. McGarigal, K., Marks, B.J.: FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General technical report PNW-GTR-351, USDA Forest Service, Pacific Northwest Research Station, Portland, OR (1995)

    Google Scholar 

  18. Jiao, L., Liu, Y.: Analyzing the shape characteristics of land use classes in remote sensing imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., I-7(September), 135–140 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Piwowarczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piwowarczyk, M., Lasota, T., Telec, Z., Trawiński, B. (2019). Valuation of Building Plots in a Rural Area Using Machine Learning Approach. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics