Skip to main content

Dynamic Airspace Configuration: A Short Review of Computational Approaches

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11683))

Included in the following conference series:

Abstract

Ever growing commercial air traffic forces the development of new generation airspace management policies, computational resources, and avionics tracking and control hardware. The dynamic airspace configuration (DAC) proposes the continuous adaptation of air traffic management (ATM) parameters in order to cope with the changing traffic conditions in a setting of almost saturated control and airspace resources. The DAC has been tackled from simulation and combinatorial optimization points of view. Here we give a review of the literature and some hints about the challenges ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://software.nasa.gov/software/ARC-15068-1.

  2. 2.

    https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5935378.

  3. 3.

    http://www.airtopsoft.com/.

  4. 4.

    http://www.eurocontrol.int/articles/ddr2-web-portal.

References

  1. Alliot, J.-M., Gruber, H., Joly, G., Schoenauer, M.: Genetic algorithms for solving air traffic control conflicts. In: Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications, pp. 0ā€“6 (1993)

    Google ScholarĀ 

  2. Cao, X., Zhu, X., Tian, Z., Chen, J., Dapeng, W., Wenbo, D.: A knowledge-transfer-based learning framework for airspace operation complexity evaluation. Transp. Res. Part C: Emerg. Technol. 95, 61ā€“81 (2018)

    ArticleĀ  Google ScholarĀ 

  3. Chen, Y., Zhang, D.: Dynamic airspace configuration method based on a weighted graph model. Chin. J. Aeronaut. 27(4), 903ā€“912 (2014)

    ArticleĀ  Google ScholarĀ 

  4. Crouch, P.E., Jackson, J.W.: Dynamic interpolation for linear systems (air traffic control). In: 29th IEEE Conference on Decision and Control, vol. 4, pp. 2312ā€“2314, December 1990

    Google ScholarĀ 

  5. Delahaye, D., Alliot, J.-M., Schoenauer, M., Farges, J.-L.: Genetic algorithms for partitioning air space. In: Proceedings of the Tenth Conference on Artificial Intelligence for Applications, pp. 291ā€“297 (1994)

    Google ScholarĀ 

  6. Delahaye, D., Schoenauer, M., Alliot, J.-M.: Airspace sectoring by evolutionary computation. In: 1998 International Conference on Evolutionary Computation, pp. 218ā€“223. IEEE (1998)

    Google ScholarĀ 

  7. Feng, X., Murray, A.T.: Allocation using a heterogeneous space Voronoi diagram. J. Geogr. Syst. 20, 207ā€“226 (2018)

    ArticleĀ  Google ScholarĀ 

  8. Fulton, N.L.: Airspace design: towards a rigorous specification of conflict complexity based on computational geometry. Aeronaut. J. 103(1020), 75ā€“84 (1999)

    ArticleĀ  Google ScholarĀ 

  9. Gerdes, I., Temme, A., Schultz, M.: Dynamic airspace sectorisation for flight-centric operations. Transp. Res. Part C: Emerg. Technol. 95, 460ā€“480 (2018)

    ArticleĀ  Google ScholarĀ 

  10. Ghorpade, S.: Airspace configuration model using swarm intelligence based graph partitioning. In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1ā€“5, May 2016

    Google ScholarĀ 

  11. Gianazza, D.: Forecasting workload and airspace configuration with neural networks and tree search methods. Artif. Intell. 174(7), 530ā€“549 (2010)

    ArticleĀ  Google ScholarĀ 

  12. Han, S.C., Zhang, M.: The optimization method of the sector partition based on metamorphic Voronoi polygon. Chin. J. Aeronaut. 17(1), 7ā€“12 (2004)

    ArticleĀ  Google ScholarĀ 

  13. Hind, H., El Omri, A., Abghour, N., Moussaid, K., Rida, M.: Dynamic airspace configuration: review and open research issues. In: 2018 4th International Conference on Logistics Operations Management (GOL), pp. 1ā€“7, April 2018

    Google ScholarĀ 

  14. Hossain, M.M., Alam, S., Delahaye, D.: An evolutionary computational framework for capacity-safety trade-off in an air transportation network. Chin. J. Aeronaut. 32, 999ā€“1010 (2019)

    ArticleĀ  Google ScholarĀ 

  15. Li, M.Z., Ryerson, M.S.: A data-driven approach to modeling high-density terminal areas: a scenario analysis of the new Beijing, China airspace. Chin. J. Aeronaut. 30(2), 538ā€“553 (2017)

    ArticleĀ  Google ScholarĀ 

  16. Nava-Gaxiola, C.A., Barrado, C.: Performance measures of the sesar southwest functional airspace block. J. Air Transp. Manag. 50, 21ā€“29 (2016)

    ArticleĀ  Google ScholarĀ 

  17. Nosedal, J., Piera, M.A., Solis, A.O., Ferrer, C.: An optimization model to fit airspace demand considering a spatio-temporal analysis of airspace capacity. Transp. Res. Part C: Emerg. Technol. 61, 11ā€“28 (2015)

    ArticleĀ  Google ScholarĀ 

  18. Pawlak, W., Goel, V., Rothenberg, D., Brinton, C.: Comparison of algorithms for the dynamic resectorization of airspace. American Institute of Aeronautics and Astronautics, 08 April 2019 (1998)

    Google ScholarĀ 

  19. Rocha-Murca, M.C., Hansman, R.J.: Identification, characterization, and prediction of traffic flow patterns in multi-airport systems. IEEE Trans. Intell. Transp. Syst. 20, 1ā€“14 (2018)

    Google ScholarĀ 

  20. Rosenow, J., Fricke, H., Schultz, M.: Air traffic simulation with 4D multi-criteria optimized trajectories. In: 2017 Winter Simulation Conference (WSC), pp. 2589ā€“2600, December 2017

    Google ScholarĀ 

  21. Rosenow, J., Fricke, H.: Impact of multi-criteria optimized trajectories on European airline efficiency, safety and airspace demand. J. Air Transp. Manag. (2019, in press)

    Google ScholarĀ 

  22. Sergeeva, M., Delahaye, D., Mancel, C., Vidosavljevic, A.: Dynamic airspace configuration by genetic algorithm. J. Traffic Transp. Eng. (Engl. Ed.) 4(3), 300ā€“314 (2017)

    ArticleĀ  Google ScholarĀ 

  23. Sergeeva, M., Delahaye, D., Mancel, C., Zerrouki, L., Schede, N.: 3D sectors design by genetic algorithm towards automated sectorisation (2015)

    Google ScholarĀ 

  24. Sidiropoulos, S., Majumdar, A., Han, K.: A framework for the optimization of terminal airspace operations in multi-airport systems. Transp. Res. Part B: Methodol. 110, 160ā€“187 (2018)

    ArticleĀ  Google ScholarĀ 

  25. StandfuƟ, T., Gerdes, I., Temme, A., Schultz, M.: Dynamic airspace optimisation. CEAS Aeronaut. J. 9(3), 517ā€“531 (2018)

    ArticleĀ  Google ScholarĀ 

  26. Temizkan, S., Sipahioglu, A.: A mathematical model suggestion for airspace sector design. J. Fac. Eng. Arch. Gazi Univ. 31, 913ā€“920 (2016)

    Google ScholarĀ 

  27. Tian, Y., Wan, L., Han, K., Ye, B.: Optimization of terminal airspace operation with environmental considerations. Transp. Res. Part D: Transp. Environ. 63, 872ā€“889 (2018)

    ArticleĀ  Google ScholarĀ 

  28. Trandac, H., Duong, V., Baptiste, P.: Optimized sectorization of airspace with constraints. In: 5th Europe/USA Air Traffic Management Research and Development (ATM R&D) Seminar, pp. 1ā€“11 (2003)

    Google ScholarĀ 

  29. Wargo, C.A., Hunter, G., Leiden, K., Glaneuski, J., Van Acker, B., Hatton, K.: New entrants (RPA/space vehicles) operational impacts upon NAS ATM and ATC. In: 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pp. 5B2-1ā€“5B2-13, September 2015

    Google ScholarĀ 

  30. Wei, G., Ting-Yu, G., Zhi-Jian, Y.: Airspace sector dividing method to balance dynamic control workload, April 2015

    Google ScholarĀ 

  31. Wei, J.: Dynamic airspace configuration algorithms for next generation air transportation system. Ph.D. thesis (2014)

    Google ScholarĀ 

  32. Wei, J., Sciandra, V., Hwang, I., Hall, W.D.: Design and evaluation of a dynamic sectorization algorithm for terminal airspace. J. Guid. Control. Dyn. 37, 1539ā€“1555 (2014)

    ArticleĀ  Google ScholarĀ 

  33. Yan, X., Zhang, H., Liao, Z., Yang, L.: A dynamic air traffic model for analyzing relationship patterns of traffic flow parameters in terminal airspace. Aerosp. Sci. Technol. 55, 10ā€“23 (2016)

    ArticleĀ  Google ScholarĀ 

  34. Yang, L., Yin, S., Minghua, H., Han, K., Zhang, H.: Empirical exploration of air traffic and human dynamics in terminal airspaces. Transp. Res. Part C: Emerg. Technol. 84, 219ā€“244 (2017)

    ArticleĀ  Google ScholarĀ 

  35. Yin, C.W.S., Venugopalan, T.K., Suresh, S.: A multi-objective approach for 3D airspace sectorization: a study on Singapore regional airspace. In: 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, pp. 1ā€“8. IEEE, December 2017

    Google ScholarĀ 

  36. Yousefi, A., Myers, T., Mitchell, J.S.B., Kostitsyna, I., Sharma, R.: Robust airspace design methods for uncertain traffic and weather. In: 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC), pp. 1D2-1ā€“1D2-11, October 2013

    Google ScholarĀ 

  37. Zhang, Y., Su, R., Sandamali, G.G.N., Zhang, Y., Cassandras, C.G., Xie, L.: A hierarchical heuristic approach for solving air traffic scheduling and routing problem with a novel air traffic model. IEEE Trans. Intell. Transp. Syst. PP(October), 1ā€“14 (2018)

    Google ScholarĀ 

  38. Zou, X., Cheng, P., An, B., Song, J.: Sectorization and configuration transition in airspace design. Math. Probl. Eng. 2016, 21 (2016)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Acknowledgments

The work reported in this paper was supported by FEDER funds for the MINECO project TIN2017-85827-P, and projects KK-2018/00071, KK-2018/00082 of the Elkartek 2018 funding program of the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel GraƱa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

GraƱa, M. (2019). Dynamic Airspace Configuration: A Short Review of Computational Approaches. In: Nguyen, N., Chbeir, R., Exposito, E., AniortĆ©, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics