Skip to main content

Current Trends in the Population-Based Optimization

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11683))

Included in the following conference series:

Abstract

Population-based methods are used to deal with computationally difficult optimization problems. The outcome of the current research effort in the field of the population-based optimization can be broadly categorized as a new, stand-alone, P-B metaheuristics, ensemble P-B metaheuristics including multi-population and multi-agent approaches, new hybrid approaches involving P-B metaheuristics, and improvements and successful modifications of the earlier known P-B metaheuristics. Research results obtained during the last few years in each of the above categories are briefly discussed. The last part of the paper includes comments on directions of future research in the population-based optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedinia, O., Amjady, N., Ghasemi, A.: A new metaheuristic algorithm based on shark smell optimization. Complexity 21(5), 97–116 (2016). https://doi.org/10.1002/cplx.21634

    Article  MathSciNet  Google Scholar 

  2. Al-Betar, M.A., Awadallah, M.A.: Island bat algorithm for optimization. Expert Syst. Appl. 107, 126–145 (2018). https://doi.org/10.1016/j.eswa.2018.04.024

    Article  Google Scholar 

  3. Antonio, L.M., CoelloCoello, C.A.: Coevolutionary multiobjective evolutionary algorithms: survey of the state-of-the-art. IEEE Trans. Evol. Comput. 22(6), 851–865 (2018). https://doi.org/10.1109/TEVC.2017.2767023

    Article  Google Scholar 

  4. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016). https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  5. Baykasoglu, A., Akpinar, S.: Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems–part 1: unconstrained optimization. Appl. Soft Comput. 56, 520–540 (2017). https://doi.org/10.1016/j.asoc.2015.10.036

    Article  Google Scholar 

  6. Boussaï, I., Lepagnot, D.J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013). https://doi.org/10.1016/j.ins.2013.02.041

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, K., Zhou, F., Yin, L., Wang, S., Wang, Y., Wan, F.: A hybrid particle swarm optimizer with sine cosine acceleration coefficients. Inf. Sci. 422, 218–241 (2018). https://doi.org/10.1016/j.ins.2017.09.015

    Article  MathSciNet  Google Scholar 

  8. Chen, K., Zhou, F., Wang, Y., Yin, L.: An ameliorated particle swarm optimizer for solving numerical optimization problems. Appl. Soft Comput. J. 73, 482–496 (2018). https://doi.org/10.1016/j.asoc.2018.09.007

    Article  Google Scholar 

  9. Cheng, R., Bai, Y., Zhao, Y., Tan, X., Xu, T.: Improved fireworks algorithm with information exchange for function optimization. Knowl.-Based Syst. 163, 82–90 (2019). https://doi.org/10.1016/j.knosys.2018.08.016

    Article  Google Scholar 

  10. Civicioglu, P.: Artificial cooperative search algorithm for numerical optimization problems. Inf. Sci. 229, 58–76 (2013). https://doi.org/10.1016/j.ins.2012.11.013

    Article  MATH  Google Scholar 

  11. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219, 8121–8144 (2013). https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  MATH  Google Scholar 

  12. Dhiman, G., Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017). https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  13. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  14. Fausto, F., Cuevas, E., Valdivia, A., González, A.: A global optimization algorithm inspired in the behavior of selfish herds. Biosystems 160, 39–55 (2017). https://doi.org/10.1016/j.biosystems.2017.07.010

    Article  Google Scholar 

  15. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway (1995)

    Google Scholar 

  16. Gan, C., Cao, W., Wu, M., Chen, X.: A new bat algorithm based on iterative local search and stochastic inertia weight. Expert Syst. Appl. 104, 202–212 (2018). https://doi.org/10.1016/j.eswa.2018.03.015

    Article  Google Scholar 

  17. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  18. Guohua, W., Shen, X., Li, H., Chen, H., Lin, A., Suganthan, P.: Ensemble of differential evolution variants. Inf. Sci. 423, 172–186 (2018). https://doi.org/10.1016/j.ins.2017.09.053

    Article  MathSciNet  Google Scholar 

  19. Guohua, W., Mallipeddi, R., Suganthan, P.N.: Ensemble strategies for population-based optimization algorithms – a survey. Swarm Evol. Comput. 44, 695–711 (2019). https://doi.org/10.1016/j.swevo.2018.08.015

    Article  Google Scholar 

  20. Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013). https://doi.org/10.1016/j.ins.2012.08.023

    Article  MathSciNet  Google Scholar 

  21. He, S., Zhu, L., Wang, L., Yu, L., Yao, C.: A modified gravitational search algorithm for function optimization. IEEE Access 7, 5984–5993 (2019). https://doi.org/10.1109/ACCESS.2018.2889854

    Article  Google Scholar 

  22. Jaderyan, M., Khotanlou, H.: Virulence optimization algorithm. Appl. Soft Comput. 43, 596–618 (2016). https://doi.org/10.1016/j.asoc.2016.02.038

    Article  Google Scholar 

  23. Jahani, E., Chizari, M.: Tackling global optimization problems with a novel algorithm–mouth Brooding Fish algorithm. Appl. Soft Comput. 62, 987–1002 (2018). https://doi.org/10.1016/j.asoc.2017.09.035

    Article  Google Scholar 

  24. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019). https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

  25. Javidy, B., Hatamlou, A., Mirjalili, S.: Ions motion algorithm for solving optimization problems. Appl. Soft Comput. 32, 72–79 (2015). https://doi.org/10.1016/j.asoc.2015.03.035

    Article  Google Scholar 

  26. Kashan, A.H.: League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 16, 171–200 (2014). https://doi.org/10.1016/j.asoc.2013.12.005

    Article  Google Scholar 

  27. Kashan, A.H.: A new metaheuristic for optimization: optics inspired optimization (OIO). Comput. Oper. Res. 55, 99–125 (2015). https://doi.org/10.1016/j.cor.2014.10.011

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaveh, A., Farhoudi, N.: A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013). https://doi.org/10.1016/j.advengsoft.2013.03.004

    Article  Google Scholar 

  29. Kaveh, A., Dadras, A.: A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv. Eng. Softw. 110, 69–84 (2017). https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  30. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks. IEEE Xplore (1995). https://doi.org/10.1109/icnn.1995.488968

  31. Koohi, S.Z., Hamid, N.A.W.A., Othman, M., Ibragimov, G.: Raccoon optimization algorithm. IEEE Access 7, 5383–5399 (2019). https://doi.org/10.1109/ACCESS.2018.2882568

    Article  Google Scholar 

  32. Kommadath, R., Dondeti, J., Kotecha, P.: Benchmarking JAYA and sine cosine algorithm on real parameter bound constrained single objective optimization problems (CEC2016). In: ISMSI 2017, Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Hong Kong, pp. 31–34 (2017). https://doi.org/10.1145/3059336.3059363

  33. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Boston (1992)

    MATH  Google Scholar 

  34. Li, J., Tan, Y.: The bare bones fireworks algorithm: a minimalist global optimizer. Appl. Soft Comput. 62, 454–462 (2018). https://doi.org/10.1016/j.asoc.2017.10.046

    Article  Google Scholar 

  35. Li, M.D., Zhao, H., Weng, X.W., Han, T.: A novel nature-inspired algorithm for optimization: virus colony search. Adv. Eng. Softw. 92, 65–88 (2016). https://doi.org/10.1016/j.advengsoft.2015.11.004

    Article  Google Scholar 

  36. Lin, J., Zhonga, Y., Li, E., Lina, X., Zhang, H.: Multi-agent simulated annealing algorithm with parallel adaptive multiple sampling for protein structure prediction in AB off-lattice model. Appl. Soft Comput. 62, 491–503 (2018). https://doi.org/10.1016/j.asoc.2017.09.037

    Article  Google Scholar 

  37. Ma, H., Shen, S., Yu, M., Yang, Z., Fei, M., Zhou, H.: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey. Swarm Evol. Comput. 44, 365–387 (2019). https://doi.org/10.1016/j.swevo.2018.04.011

    Article  Google Scholar 

  38. Mahdavi, S., Rahnamayan, S., Mahdavi, A.: Majority voting for discrete population-based optimization algorithms. Soft Comput. 23, 1–18 (2019). https://doi.org/10.1007/s00500-018-3530-1

    Article  Google Scholar 

  39. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

    Book  MATH  Google Scholar 

  40. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  41. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  42. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  43. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  44. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  45. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016). https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  46. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  47. Moghdani, R., Salimifard, K.: Volleyball premier league algorithm. Appl. Soft Comput. 64, 161–185 (2018). https://doi.org/10.1016/j.asoc.2017.11.043

    Article  Google Scholar 

  48. Nenavath, H., Jatoth, R.K.: Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl. Soft Comput. 62, 1019–1043 (2018). https://doi.org/10.1016/j.asoc.2017.09.039

    Article  Google Scholar 

  49. Nematollahi, A.F., Rahiminejad, A., Vahidi, B.: A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Appl. Soft Comput. 59, 596–621 (2017). https://doi.org/10.1016/j.asoc.2017.06.033

    Article  Google Scholar 

  50. Ozsoydan, F.B., Baykasoglu, A.: Quantum firefly swarms for multimodal dynamic optimization problems. Expert Syst. Appl. 115, 189–199 (2019). https://doi.org/10.1016/j.eswa.2018.08.007

    Article  Google Scholar 

  51. Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013). https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  52. Qi, X., Zhu, Y., Zhang, H.: A new meta-heuristic butterfly-inspired algorithm. J. Comput. Sci. 23, 226–239 (2017). https://doi.org/10.1016/j.jocs.2017.06.003

    Article  MathSciNet  Google Scholar 

  53. Sato, T., Hagiwara, M.: Bee system: finding solution by a concentrated search. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, pp. 3954–3959 (1997)

    Google Scholar 

  54. Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimization algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017). https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  55. Saxena, A., Kumar, R., Das, S.: β-chaotic map enabled grey wolf optimizer. Appl. Soft Comput. J. 75, 84–85 (2019). https://doi.org/10.1016/j.asoc.2018.10.044

    Article  Google Scholar 

  56. Shareef, H., Ibrahim, A.A., Mutlag, A.H.: Lightning search algorithm. Appl. Soft Comput. 36, 315–333 (2015). https://doi.org/10.1016/j.asoc.2015.07.028

    Article  Google Scholar 

  57. Sharafi, Y., Khanesar, M.A., Teshnehlab, M.: COOA: competitive optimization algorithm. Swarm Evol. Comput. 30, 39–63 (2016). https://doi.org/10.1016/j.swevo.2016.04.002

    Article  Google Scholar 

  58. Singh, N., Singh, S.B.: A novel hybrid GWO-SCA approach for optimization problems. Eng. Sci. Technol. Int. J. 20, 1586–1601 (2017). https://doi.org/10.1016/j.jestch.2017.11.001

    Article  Google Scholar 

  59. Skakovski, A., Jedrzejowicz, P.: An Island-based differential evolution algorithm with the multi-size populations. Expert Syst. Appl. (2019) https://doi.org/10.1016/j.eswa.2019.02.027

    Article  Google Scholar 

  60. Tabari, A., Ahmad, A.: A new optimization method: electro-search algorithm. Comput. Chem. Eng. 103, 1–11 (2017). https://doi.org/10.1016/j.compchemeng.2017.01.046

    Article  Google Scholar 

  61. Tang, D., Dong, S., Jiang, Y., Li, H., Huang, Y.: ITGO: invasive tumor growth optimization algorithm. Appl. Soft Comput. 36, 670–698 (2015). https://doi.org/10.1016/j.asoc.2015.07.045

    Article  Google Scholar 

  62. Uymaz, S.A., Tezel, G., Yel, E.: Artificial algae algorithm (AAA) for nonlinear global optimization. Appl. Soft Comput. 31, 153–171 (2015). https://doi.org/10.1016/j.asoc.2015.03.003

    Article  Google Scholar 

  63. Wang, J., Zhang, W., Zhang, J.: Cooperative differential evolution with multiple populations for multiobjective optimization. IEEE Trans. Cybern. 46(12), 2848–2861 (2016). https://doi.org/10.1109/tcyb.2015.2490669

    Article  Google Scholar 

  64. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  65. Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

  66. Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3, 24–36 (2016). https://doi.org/10.1016/j.jcde.2015.06.003

    Article  Google Scholar 

  67. Ye, W., Feng, W., Fan, S.: A novel multi-swarm particle swarm optimization with dynamic learning strategy. Appl. Soft Comput. 61, 832–843 (2017). https://doi.org/10.1016/j.asoc.2017.08.051

    Article  Google Scholar 

  68. Yu, Y., Gao, S., Cheng, S., Wang, Y., Song, S., Yuan, F.: CBSO: a memetic brain storm optimization with chaotic local search. Memetic Comput. 10, 353–367 (2018). https://doi.org/10.1007/s12293-017-0247-0

    Article  Google Scholar 

  69. Yong, W., Tao, W., Cheng-Zhi, Z., Hua-Juan, H.: A new stochastic optimization approach dolphin swarm optimization algorithm. Int. J. Comput. Intell. Appl. 15(2), 1650011 (2016). https://doi.org/10.1142/S1469026816500115

    Article  Google Scholar 

  70. Zhang, Q., Wang, R., Yang, J., Ding, K., Li, Y., Hu, J.: Collective decision optimization algorithm: a new heuristic optimization method. Neurocomputing 221, 123–137 (2017). https://doi.org/10.1016/j.neucom.2016.09.068

    Article  Google Scholar 

  71. Zhang, J., Xiao, M., Gao, L., Pan, Q.: Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Appl. Math. Model. 63, 464–490 (2018). https://doi.org/10.1016/j.apm.2018.06.036

    Article  MathSciNet  Google Scholar 

  72. Zhang, W., Gao, K., Zhang, W., Wang, X., Zhang, Q., Wang, H.: A hybrid clonal selection algorithm with modified combinatorial recombination and success-history based adaptive mutation for numerical optimization. Appl. Intell. 49, 819–836 (2019). https://doi.org/10.1007/s10489-018-1291-2

    Article  Google Scholar 

  73. Zheng, L.M., Zhang, S.X., Tang, K.S., Zheng, S.Y.: Differential evolution powered by collective information. Inf. Sci. 399, 13–29 (2017). https://doi.org/10.1016/j.ins.2017.02.055

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Jedrzejowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jedrzejowicz, P. (2019). Current Trends in the Population-Based Optimization. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics