Skip to main content

Distributed Learning Automata Based Data Dissemination in Networked Robotic Systems

  • Conference paper
  • First Online:
Mobile Computing, Applications, and Services (MobiCASE 2019)

Abstract

Networked robotics systems often work in collaboration to accomplish tasks. The random environments the robots work in render any previous contact data between robots useless as the contact patterns are different for each deployment. In the case of military and disaster scenarios, delivering data items quickly is imperative to the success of a mission. However, robots have limited battery and need a lightweight protocol that maximizes data delivery ratio and minimizes data delivery latency while consuming minimal energy. We present two learning automata based data dissemination protocols, LADD and sc-LADD. LADD uses learning automata with direct connections to all neighboring nodes to make efficient and accurate forwarding decisions while sc-LADD uses learning automata and exploits the clustering nature of the robotic systems to abstract clusters/groups and reduce the number of decisions available to the learning automata, which also reduces overhead.

This work is supported in part by NASA grant 80NSSC18M0048.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., Schwamborn, M.: BonnMotion: a mobility scenario generation and analysis tool. In: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques (SIMUTools), pp. 51:1–51:10 (2010)

    Google Scholar 

  2. Dhurandher, S.K., Sharma, D., Woungang, I., Gupta, R., Garg, S.: GAER: genetic algorithm-based energy-efficient routing protocol for infrastructure-less opportunistic networks. J. Supercomput. 69(3), 1183–1214 (2014)

    Article  Google Scholar 

  3. Frey, H., Ingelrest, F., Simplot-Ryl, D.: Localized minimum spanning tree based multicast routing with energy-efficient guaranteed delivery in ad hoc and sensor networks. In: 2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–8 (2008)

    Google Scholar 

  4. Förster, A., Murphy, A.L.: FROMS: a failure tolerant and mobility enabled multicast routing paradigm with reinforcement learning for wsns. Ad Hoc Netw. 9(5), 940–965 (2011)

    Article  Google Scholar 

  5. Gao, W., Cao, G.: User-centric data dissemination in disruption tolerant networks. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), pp. 3119–3127 (2011)

    Google Scholar 

  6. Gao, W., Cao, G., Porta, T.L., Han, J.: On exploiting transient social contact patterns for data forwarding in delay-tolerant networks. IEEE Trans. Mob. Comput. 12(1), 151–165 (2013)

    Article  Google Scholar 

  7. Gao, W., Li, Q., Zhao, B., Cao, G.: Multicasting in delay tolerant networks: a social network perspective. In: Proceedings of the Tenth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), New York, NY, USA, pp. 299–308 (2009)

    Google Scholar 

  8. Gao, W., Li, Q., Zhao, B., Cao, G.: Social-aware multicast in disruption-tolerant networks. IEEE/ACM Trans. Netw. 20(5), 1553–1566 (2012)

    Article  Google Scholar 

  9. Hu, T., Fei, Y.: QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mob. Comput. 9(6), 796–809 (2010)

    Article  Google Scholar 

  10. Hui, P., Crowcroft, J., Yoneki, E.: BUBBLE Rap: social-based forwarding in delay-tolerant networks. IEEE Trans. Mob. Comput. 10(11), 1576–1589 (2011)

    Article  Google Scholar 

  11. Lee, S., Gerla, M., Toh, C.: On-demand multicast routing protocol (ODMRP) for ad-hoc networks. Mob. Netw. Appl. 7 (2003)

    Google Scholar 

  12. Li, F., Zhao, L., Zhang, C., Gao, Z., Wang, Y.: Routing with multi-level cross-community social groups in mobile opportunistic networks. Pers. Ubiquitous Comput. 18(2), 385–396 (2014)

    Article  Google Scholar 

  13. Lindgren, A., Doria, A., Schelén, O.: Probabilistic routing in intermittently connected networks. SIGMOBILE Mob. Comput. Commun. Rev. 7(3), 19–20 (2003)

    Article  Google Scholar 

  14. Misra, S., Krishna, P.V., Bhiwal, A., Chawla, A., Wolfinger, B.E., Lee, C.: A learning automata-based fault-tolerant routing algorithm for mobile ad hoc networks. J. Supercomput. 62(1), 4–23 (2012)

    Article  Google Scholar 

  15. Nguyen, N., Dinh, T., Tokala, S., Thai, M.: Overlapping communities in dynamic networks: their detection and mobile applications. In: Proceedings of the 17th Annual International ACM Conference on Mobile Computing and Networking (MobiCom), New York, NY, USA, pp. 85–96 (2011)

    Google Scholar 

  16. Riley, G.F., Henderson, T.R.: The \(ns\)-3 network simulator. In: Wehrle, K., Günes, M., Gross, J. (eds.) Modeling and Tools for Network Simulation, Chap. 2. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12331-3_2

    Chapter  Google Scholar 

  17. Torkestani, J., Meybodi, M.: Mobility-based multicast routing algorithm for wireless mobile ad-hoc networks: a learning automata approach. Comput. Commun. 33(6), 721–735 (2010)

    Article  Google Scholar 

  18. Torkestani, J., Meybodi, M.: A learning automata-based heuristic algorithm for solving the minimum spanning tree problem in stochastic graphs. J. Supercomput. 59(2), 1035–1054 (2012)

    Article  Google Scholar 

  19. Wu, C., Ohzahata, S., Kato, T.: Flexible, portable, and practicable solution for routing in vanets: a fuzzy constraint q-learning approach. IEEE Trans. Veh. Technol. 62(9), 4251–4263 (2013)

    Article  Google Scholar 

  20. Wu, D., et al.: ADDSEN: adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Trans. Comput. 66(2), 183–198 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Yu, J., Chong, P.: A survey of clustering schemes for mobile ad hoc networks. IEEE Commun. Surv. Tutor. 7(1), 32–48 (2005)

    Article  Google Scholar 

  22. Zhang, X., Cao, G.: Efficient data forwarding in mobile social networks with diverse connectivity characteristics. In: Proceedings of IEEE 34th International Conference on Distributed Computing Systems (ICDCS), pp. 31–40 (2014)

    Google Scholar 

  23. Zhang, X., Cao, G.: Transient community detection and its application to data forwarding in delay tolerant networks. IEEE/ACM Trans. Netw. 25(5), 2829–2843 (2017)

    Article  Google Scholar 

  24. Zhao, W., Ammar, M., Zegura, E.: Multicasting in delay tolerant networks: semantic models and routing algorithms. In: Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM) Workshop on Delay-Tolerant Networking (WDTN), New York, NY, USA, pp. 268–275 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henderson, G., Han, Q. (2019). Distributed Learning Automata Based Data Dissemination in Networked Robotic Systems. In: Yin, Y., Li, Y., Gao, H., Zhang, J. (eds) Mobile Computing, Applications, and Services. MobiCASE 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-030-28468-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28468-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28467-1

  • Online ISBN: 978-3-030-28468-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics