Skip to main content

Prospects of Machine and Deep Learning in Analysis of Vital Signs for the Improvement of Healthcare Services

  • Chapter
  • First Online:
Nature-Inspired Computation in Data Mining and Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 855))

Abstract

The advent of eHealth and the need for real-time patient monitoring and assessment has prompted interest in understanding people behavior for improving care services. In this paper, the application of machine learning algorithms in clustering and predicting vital signs was pursued. In the context of big data and the debate surrounding vital signs data is fast becoming more relevant and applicable in predictive medicine. This paper assesses the applicability of k-Means and x-Means in clustering signals and used deep learning, Naïve Bayes, Random Forests, Decision Trees, and Generalized Linear Models to predict human dynamic motion-based vital signal patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Z., Yang, Z., Dong, T.: A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time (2018). Accessed 8 May 2018

    Google Scholar 

  2. Ajami, S., Teimouri, F.: Features and application of wearable biosensors in medical care. J. Res. Med. Sci. 20, 1208 (2015). https://doi.org/10.4103/1735-1995.172991

    Article  Google Scholar 

  3. Majumder, S., Mondal, T., Deen, M.: Wearable sensors for remote health monitoring. Sensors 17, 130 (2017). https://doi.org/10.3390/s17010130

    Article  Google Scholar 

  4. Liu, N.T., Holcomb, J.B., Wade, C.E., Darrah, M.I., Salinas, J.: Utility of vital signs, heart rate variability and complexity, and machine learning for identifying the need for lifesaving interventions in trauma patients. Shock 42(2), 108–114 (2014)

    Article  Google Scholar 

  5. Khan, F., Cho, S.H.: A detailed algorithm for vital sign monitoring of a stationary/non-stationary human through IR-UWB radar. Sensors 17(2), 290 (2017)

    Article  Google Scholar 

  6. Lehman, L.W., Mark, R., Nemati, S.: A model-based machine learning approach to probing autonomic regulation from nonstationary vital-signs time series. IEEE J. Biomed. Health Inform. (2016)

    Google Scholar 

  7. Bhavnani, S.P., Parakh, K., Atreja, A., Druz, R., Graham, G.N., Hayek, S.S., Krumholz, H.M., Maddox, T.M., Majmudar, M.D., Rumsfeld, J.S., Shah, B.R.: 2017 roadmap for innovation-ACC health policy statement on healthcare transformation in the era of digital health, big data, and precision health. J. Am. Coll. Cardiol. 70(21), 2696–2718 (2017)

    Article  Google Scholar 

  8. Aboudi, N.E., Benhlima, L.: Big data management for healthcare systems: architecture, requirements, and implementation. Adv. Bioinform. 2018, 10 (2018)

    Article  Google Scholar 

  9. Kamiali, A., Fister, I., Turkanovi, M., Karakati, S.: Sensors and functionalities of non-invasive wrist-wearable devices: a review. Sensors 18(6), 1714 (2018)

    Article  Google Scholar 

  10. Ivan, M.P., Garcia, N.M., Pombo, N., Flórez-Revuelta, F., Spinsante, S.: Approach for the development of a framework for the identification of activities of daily living using sensors in mobile devices. Sensors 18(2), 640 (2018)

    Article  Google Scholar 

  11. Punj, R., Kumar, R.: Technological aspects of WBANs for health monitoring: a comprehensive review. Wirel. Netw. 1–33 (2018)

    Google Scholar 

  12. Das, N., Das, L., Rautaray, S.S., Pandey, M.: Big data analytics for medical applications. Int. J. Mod. Educ. Comput. Sci. 10(2), 35 (2018)

    Article  Google Scholar 

  13. Rahul, K.P., Durga, P., Ekanath, S.R.: Data to diagnosis in global health: a 3P approach. BMC Med. Inf. Decis. Making 18 (2018)

    Google Scholar 

  14. Fröhlich, H., Balling, R., Beerenwinkel, N., Kohlbacher, O., Kumar, S., Lengauer, T., Maathuis, M.H., Moreau, Y., Murphy, S.A., Przytycka, T.M., Rebhan, M., Röst, H., Schuppert, A., Schwab, M., Spang, R., Stekhoven, D.: From hype to reality: data science enabling personalized medicine. BMC Med. 16 (2018)

    Google Scholar 

  15. Toch, E., Lerner, B., Ben-Zion, E., Ben-Gal, I.: Analyzing large-scale human mobility data: a survey of machine learning methods and applications. Knowl. Inf. Syst. 1–23 (2018)

    Google Scholar 

  16. Ankitha, Architha, Chandana, Gulshan, Thota, S.: Application to predict chronical kidney disease. Int. J. Adv. Res. Comput. Sci. 9, 6–9 (2018)

    Google Scholar 

  17. Weller, R., Foard, K., Harwood, T.: Evaluation of a wireless, portable, wearable multi-parameter vital signs monitor in hospitalized neurological and neurosurgical patients. J. Clin. Monit. Comput. (2017). https://doi.org/10.1007/s10877-017-0085

  18. Moustafa, R.: Andrews curves. Wiley Interdisc. Rev. Comput. Stat. 3, 373–382 (2011). https://doi.org/10.1002/wics.160

    Article  Google Scholar 

  19. Sahambi, J.S., Tandon, S.N., Bhatt, R.K.P.: Using wavelet transforms for ECG characterization. An on-line digital signal processing system. IEEE Eng. Med. Biol. Mag. 16(1), 77–83 (1997)

    Article  Google Scholar 

  20. Acharya, R., Krishnan, S.M., Spaan, J.A., Suri, J.S. (eds.): Advances in Cardiac Signal Processing, pp. 1–50. Springer, Heidelberg (2007)

    Book  Google Scholar 

  21. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  22. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521(7553), 452 (2015)

    Article  Google Scholar 

  23. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT press (2001)

    Google Scholar 

  24. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)

    Article  Google Scholar 

  25. Gultepe, E., Green, J.P., Nguyen, H., Adams, J., Albertson, T., Tagkopoulos, I.: From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J. Am. Med. Inform. Assoc. 21(2), 315–325 (2013)

    Article  Google Scholar 

  26. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach: a case study in intensive care monitoring (No. 1999, 24). Technical Report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund (1999)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the UCI team for granting access to the data used in the study. We acknowledge and appreciate the Oresti Banos, Rafael Garcia, and Alejandro Saez of the Department of Computer Architecture and Computer Technology, University of Granada for collecting and sharing the data with UCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Alloghani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alloghani, M., Baker, T., Al-Jumeily, D., Hussain, A., Mustafina, J., Aljaaf, A.J. (2020). Prospects of Machine and Deep Learning in Analysis of Vital Signs for the Improvement of Healthcare Services. In: Yang, XS., He, XS. (eds) Nature-Inspired Computation in Data Mining and Machine Learning. Studies in Computational Intelligence, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-030-28553-1_6

Download citation

Publish with us

Policies and ethics