Abstract
3D object classification in cluttered scenes is a critical area of computer vision and robotic research for autonomous robots to act in their surrounding area. In this chapter, we extend our previous work [51] by classifying 3D object categories in real-world scenes. We extract geometric features from 3D point clouds using a 3D global descriptor called Viewpoint Feature Histogram (VFH) then we learn the extracted features with Deep Belief Networks (DBNs). Thereafter, we test the power of Discriminative and Generative DBN architectures (DDBN/GDBN) for object categorization. The experiments on Washington RGBD dataset demonstrate the robustness of discriminative architecture which outperforms state-of-the-art. Also, we evaluate the performance of our approach on the real-world objects that are segmented from cluttered indoor scenes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexandre, L.A.: 3D object recognition using convolutional neural networks with transfer learning between input channels. In: Intelligent Autonomous Systems 13, pp. 889–898. Springer, Berlin (2016)
Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E.P., Lent, R., Herculano-Houzel, S., et al.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Compar. Neurol. 513(5), 532–541 (2009)
Basu, J.K., Bhattacharyya, D., Kim, T.: Use of artificial neural network in pattern recognition. Int. J. Softw. Eng. Appl. 4(2) (2010)
Bengio, Y., Chapados, N., Delalleau, O., Larochelle, H., Saint-Mleux, X., Hudon, C., Louradour, J.: Detonation classification from acoustic signature with the restricted Boltzmann machine. Comput. Intell. 28(2), 261–288 (2012)
Bo, L., Ren, X., Fox, D.: Depth kernel descriptors for object recognition. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 821–826. IEEE (2011)
Bobkov, B, Chen, S, Jian, R, Iqbal, Z, Steinbach, E.: . Noise-resistant deep learning for object classification in 3D point clouds using a point pair descriptor. IEEE Robot. Autom. Lett. (2018)
Carreira-Perpinan, M.A., Hinton, G.E.: On contrastive divergence learning. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pp. 33–40
Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inform. Process. 3, e2 (2014)
Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep learning for robust RGB-D object recognition. In: Intelligent Robots and Systems (IROS), pp. 681–687. IEEE (2015)
Fischer, A., Igel, C.: Training restricted boltzmann machines: an introduction. Patt. Recogn. 47(1), 25–39 (2014)
Gomez-Donoso, F., Garcia-Garcia, A., Garcia-Rodriguez, J., Orts-Escolano, S., Cazorla, M.: Lonchanet: a sliced-based cnn architecture for real-time 3D object recognition. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 412–418. IEEE (2017)
Hegde, V., Zadeh, R.: Fusionnet: 3D object classification using multiple data representations. arXiv preprint arXiv:1607.05695 (2016)
Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Neural Networks: Tricks of the Trade, pp. 599–619. Springer, Berlin (2012)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Janoch, A., Karayev, S., Jia, Y., Barron, J.T, Fritz, M., Saenko, K., Darrell, T.: A category-level 3D object dataset: putting the kinect to work. In: Consumer Depth Cameras for Computer Vision, pp. 141–165. Springer, Berlin
Keronen, S., Cho, K., Raiko, T., Ilin, A., Palomäki, K.: Gaussian-Bernoulli restricted Boltzmann machines and automatic feature extraction for noise robust missing data mask estimation. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6729–6733. IEEE (2013)
Keyvanrad, M.A., Homayounpour, M.M.: Deep belief network training improvement using elite samples minimizing free energy. arXiv preprint arXiv:1411.4046 (2014)
Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)
Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: Proceedings of the 25th International Conference on Machine Learning, pp. 536–543. ACM (2008)
LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), vol. 2, pp II–97. IEEE (2004)
Liu, Y., Zhou, S., Chen, Q.: Discriminative deep belief networks for visual data classification. Patt. Recogn. 44(10), 2287–2296 (2011)
Loghmani, M.R., Planamente, M., Caputo, B., Vincze, M.: Recurrent convolutional fusion for RGB-D object recognition. arXiv preprint arXiv:1806.01673 (2018)
Madai-Tahy, L., Otte, S., Hanten, R., Zell, A.: Revisiting deep convolutional neural networks for RGB-D based object recognition. In: International Conference on Artificial Neural Networks, pp. 29–37. Springer, Berlin (2016)
Madry, M., Ek C.H., Detry, R., Hang, K., Kragic, D.: Improving generalization for 3D object categorization with global structure histograms. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1379–1386. IEEE (2012)
Maturana, D., Scherer, S.: Voxnet: a 3D convolutional neural network for real-time object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)
McCann, S., Lowe, D.G.: Local Naive Bayes nearest neighbor for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3650–3656. IEEE (2012)
Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010)
Ouadiay, F.Z., Zrira, N., Bouyakhf, E.H., Majid Himmi, M.: 3D object categorization and recognition based on deep belief networks and point clouds. In: Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics, pp. 311–318 (2016)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. Proc. Comput. Vis. Patt. Recogn. (CVPR) 1(2), 4 (2017)
Rumelbart, D.E., McClelland, J.L.: Parallel distributed processing: Explorations in the microstuctures of cognition (1986)
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation (ICRA’09), pp. 3212–3217. IEEE (2009)
Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 1–6. IEEE (2009)
Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE (2010)
Salakhutdinov, R.: Learning deep generative models. Annual Rev. Statistics Appl. 2, 361–385 (2015)
Savarese, S., Fei-Fei, L.: 3D generic object categorization, localization and pose estimation. In: IEEE 11th International Conference on Computer Vision (ICCV 2007), pp. 1–8. IEEE (2007)
Schwarz, M., Schulz, H., Behnke, S.: RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1329–1335. IEEE (2015)
Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., Poggio, T.: A quantitative theory of immediate visual recognition. Progress Brain Res. 165, 33–56 (2007)
Shin, J., Triebel, R., Siegwart, R.: Unsupervised 3D object discovery and categorization for mobile robots. In: Robotics Research, pp. 61–76. Springer, Berlin (2017)
Socher, R., Huval, B., Bath, B., Manning, C.D., Ng, A.Y.: Convolutional-recursive deep learning for 3D object classification. In: Advances in Neural Information Processing Systems, pp. 665–673 (2012)
Sun, S., An, N., Zhao, X., Tan, M.: A PCA-CCA network for RGB-D object recognition. Int. J. Adv. Robotic Syst. 15(1), 1729881417752820 (2018)
Tang, S., Wang, X., Lv, X., Han, T.X., Keller, J., He, Z., Skubic, M., Lao, S.: Histogram of oriented normal vectors for object recognition with a depth sensor. In: Asian Conference on Computer Vision, pp. 525–538. Springer, Berlin (2012)
Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1064–1071. ACM (2008)
Toldo, R., Castellani, U., Fusiello, A.: A bag of words approach for 3D object categorization. In: Computer Vision/Computer Graphics CollaborationTechniques, pp. 116–127. Springer,Berlin (2009)
Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition. In: Ninth IEEE International Conference on Computer Vision, pp. 273–280. IEEE (2003)
Yamashita, T., Tanaka, M., Yoshida, E., Yamauchi, Y., Fujiyoshii, H.: To be Bernoulli or to be Gaussian, for a restricted Boltzmann machine. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 1520–1525. IEEE (2014)
Zaki, H.F.M., Shafait, F., Mian, A.: Convolutional hypercube pyramid for accurate RGB-D object category and instance recognition. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1685–1692. IEEE (2016)
Zhang, H., Berg, A.C., Maire, M., Malik, JSVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2126–2136. IEEE (2006)
Zhi, S., Liu, Y., Li, X., Guo, Y.: Lightnet: a lightweight 3D convolutional neural network for real-time 3D object recognition. In: Eurographics Workshop on 3D Object Retrieval (2017)
Zhou, S., Chen, Q., Wang, X.: Discriminative deep belief networks for image classification. In: 2010 IEEE International Conference on Image Processing, pp. 1561–1564. IEEE (2010)
Zrira, N., Hannat, M., Bouyakhf, E.-H., Khan, H.A.: Generative vs. discriminative deep belief network for 3D object categorization. In: VISIGRAPP (5: VISAPP), pp. 98–107 (2017)
Zrira, N., Khan, H.A., Bouyakhf, E.-H.: Discriminative deep belief network for indoor environment classification using global visual features. Cogn. Comput. 10(3), 437–453 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Zrira, N., Hannat, M., Bouyakhf, E.H. (2020). 3D Object Categorization in Cluttered Scene Using Deep Belief Network Architectures. In: Yang, XS., He, XS. (eds) Nature-Inspired Computation in Data Mining and Machine Learning. Studies in Computational Intelligence, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-030-28553-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-28553-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28552-4
Online ISBN: 978-3-030-28553-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)