Skip to main content

Variational Hilbert Regression with Applications to Terrain Modeling

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

The ability to generate accurate terrain models is of key importance in a wide variety of robotics tasks, ranging from path planning and trajectory optimization to environment exploration and mining applications. This paper introduces a novel regression methodology for terrain modeling that takes place in a Reproducing Kernel Hilbert Space, and can approximate arbitrarily complex functions using Variational Bayesian inference. A sparse kernel is used to efficiently project input points into a high-dimensional feature vector, based on cluster information generated automatically from training data. Each kernel maintains its own regression model, and the entire set is simultaneously optimized in an iterative fashion as more data is collected, to maximize a global variational bound. Additionally, we show how kernel parameters can be jointly learned alongside the regression model parameters, to achieve a better approximation of the underlying function. Experimental results show that the proposed methodology consistently outperforms current state-of-the-art techniques, while maintaining a fully probabilistic treatment of uncertainties and high scalability to large-scale datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proposed framework can be trivially extended to support different regression models for each cluster, including the learning of which regression models should be used, however this was not explored in this paper.

  2. 2.

    All computations were performed on a i7/2.60 x 8 GHz notebook, with multi-threading enabled wherever possible. Due to lack of memory, training data was downsampled by 5 in the Rover dataset and by 25 in the Aerial dataset for tests using the SGP framework.

References

  1. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035 (2007)

    Google Scholar 

  2. Bishop, C.: Pattern Recognition and Machine Learning (Information and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  3. Broderick, T., Boyd, N., Wibisono, A., Wilson, A., Jordan, M.: Streaming variational Bayes. In: Advances in Neural Information Processing Systems (NIPS), pp. 1727–1735 (2013)

    Google Scholar 

  4. Carlin, B., Louis, T.: Bayesian Methods for Data Analysis, 3rd edn. Chapman and Hall, London (2008)

    Google Scholar 

  5. Doherty, K., Wang, J., Englot, B.: Probabilistic map fusion for fast, incremental occupancy mapping with 3d Hilbert maps. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  6. Drugowitsch, J.: Variational Bayesian inference for linear and logistic regression. Technical report (2013). arXiv:1310.5438

  7. Frankhauser, P., Bloesch, M., Gehring, C., Hutter, M., Siegwart, R.: Robot-centric elevation mapping with uncertainty estimates. In: Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR) (2014)

    Google Scholar 

  8. Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice, 1st edn. Chapman and Hall, London (1995)

    Google Scholar 

  9. Gu, J., Cao, Q., Huang, Y.: Rapid traversability assessment in 2.5d grid-based map on rough terrain. Int. J. Adv. Robot. Syst. 5(4) (2008)

    Google Scholar 

  10. Guizilini, V., Ramos, F.: Large-scale 3d scene reconstruction with Hilbert maps. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (2016)

    Google Scholar 

  11. Guizilini, V., Ramos, F.: Unsupervised feature learning for 3d scene reconstruction with occupancy maps. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  12. Hadsell, R., Bagnell, J., Huber, D., Hebert, M.: Space-carving kernels for accurate rough terrain estimation. Int. J. Robot. Res. (IJRR) 29(8), 981–996 (2010)

    Article  Google Scholar 

  13. Honkela, A., Valpola, H.: On-line variational bayesian learning. In: International Symposium on Independent Component Analysis and Blind Signal Separation (ICA) (2003)

    Google Scholar 

  14. Kidner, D., Dorey, M., Smith, D.: What’s the point? interpolation and extrapolation with a regular grid dem. In: Proceedings of the International Conference on Geocomputation (1999)

    Google Scholar 

  15. Krotkov, E., Hoffman, R.: Terrain mapping for a walking planetary rover. IEEE Trans. Robot. Autom. 10(6), 278–292 (1994)

    Article  Google Scholar 

  16. Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., Chatila, R.: Autonomous rover navigation on unknown terrains: functions and integration. Int. J. Robot. Res. (IJRR) 21(10), 917–942 (2002)

    Article  Google Scholar 

  17. Lloyd, S.: Least-squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–136 (1982)

    Article  MathSciNet  Google Scholar 

  18. Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)

    Article  Google Scholar 

  19. Melkumyan, A., Ramos, F.: A sparse covariance function for exact Gaussian process inference in large datasets. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1936–1942 (2009)

    Google Scholar 

  20. Muja, M., Lowe, D.: Fast approximate nearest neighbours with automatic algorithm configuration. In: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), vol. 4, pp. 331–340 (2009)

    Google Scholar 

  21. Murphy, K.: Machine Learning: A Probabilistic Perspective, 1st edn. The MIT Press, Cambridge (2012)

    Google Scholar 

  22. Pébay, P.: Formulas for robust, one-pass parallel computation of covariances and arbitrary-order statistical moments. Technical report, Sandia National Laboratories (2008)

    Book  Google Scholar 

  23. Plagemann, C., Kersting, K., Burgard, W.: Nonstationary Gaussian process regression using point estimates of local smoothness. In: Proceedings of the European Conference on Machine Learning (ECML) (2008)

    Google Scholar 

  24. Plagemann, C., Mischke, S., Prentice, S., Kersting, K., Roy, N., Burgard, W.: Learning predictive terrain models for legged robot locomotion. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (2008)

    Google Scholar 

  25. Quinonero-Candelas, J., Rasmussen, C.: An unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. (JMLR) 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Ramos, F., Ott, L.: Hilbert maps: scalable continuous occupancy mapping with stochastic gradient descent. In: Proceedings of Robotics: Science and Systems (RSS) (2015)

    Google Scholar 

  27. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2005)

    Google Scholar 

  28. Rekleitis, I., Bedwani, J., Gingras, D., Dupuis, E.: Experimental results for over-the-horizon planetary exploration using a LIDAR sensor (2008)

    Google Scholar 

  29. Sato, M.: Online model selection based on the variational Bayes. Neural Comput. 13(7), 1649–1681 (2001)

    Article  Google Scholar 

  30. Schölkopf, B., Muandet, K., Fukumizu, K., Harmeling, S., Peters, J.: Computing functions of random variables via reproducing kernel Hilbert space representations. Stat. Comput. 25(4), 755–766 (2015)

    Article  MathSciNet  Google Scholar 

  31. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2001)

    Google Scholar 

  32. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the International Conference on World Wide Web (WWW), vol. 19, pp. 1177–1178 (2010)

    Google Scholar 

  33. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In: Advances in Neural Information Processing Systems (NIPS), pp. 1257–1264 (2006)

    Google Scholar 

  34. Triebel, R., Pfaff, P., Burgard, W.: Multi-level surface maps for outdoor terrain mapping and loop closing. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (2006)

    Google Scholar 

  35. Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte, H.: Gaussian process modeling of large-scale terrain. J. Field Robot. (JFR) 26(10), 812–840 (2010)

    Article  Google Scholar 

  36. Yuan, M., Cai, T.: A reproducing kernel Hilbert space approach to functional linear regression. Ann. Stat. 38(6), 3412–3444 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from the Faculty of Engineering and Information Technologies, The University of Sydney, under the Faculty Research Cluster Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Campanholo Guizilini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guizilini, V.C., Ramos, F.T. (2020). Variational Hilbert Regression with Applications to Terrain Modeling. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_33

Download citation

Publish with us

Policies and ethics