Skip to main content

Multirobot Cooperative Localization Algorithm with Explicit Communication and Its Topology Analysis

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

This paper proposes a new cooperative localization algorithm that separates communication and observation into independent mechanisms. While existing algorithms acknowledge observations between robots are crucial in cooperative localization schemes, communication is considered only an auxiliary role in observation update but not explicitly stated. However, such algorithms require the communication to be available whenever needed, and it is difficult to consider the effect of communication imperfection, which is unavoidable in real systems. We propose the Global State–Covariance Intersection (GS-CI) multirobot cooperative localization algorithm that can independently update localization estimates through both observation and communication steps. We also provide a theoretical upper bound of the resulting estimation uncertainty based on observation and communication topologies. Simulations using generated data validates the theoretical analysis, and shows the comparable performance to the centralized equivalent approach with less communication together with real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arambel, P.O., Rago, C., Mehra, R.K.: Covariance intersection algorithm for distributed spacecraft state estimation. In: Proceedings of the 2001 American Control Conference, vol. 6, pp. 4398–4403 (2001)

    Google Scholar 

  2. Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM Algorithm. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3562–3568 (2006)

    Google Scholar 

  3. Carrillo-Arce, L.C., Nerurkar, E.D., Gordillo, J.L., Roumeliotis, S.I.: Decentralized multi-robot cooperative localization using covariance intersection. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1412–1417 (2013)

    Google Scholar 

  4. Cattivelli, F.S., Sayed, A.H.: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Autom. Control 55(9), 2069–2084 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chen, L., Arambel, P.O., Mehra, R.K.: Estimation under unknown correlation: Covariance intersection revisited. IEEE Trans. Autom. Control 47(11), 1879–1882 (2002)

    Google Scholar 

  6. Hu, J., Xie, L., Zhang, C.: Diffusion Kalman filtering based on covariance intersection. IEEE Trans. Signal Process. 60(2), 891–902 (2012)

    Article  MathSciNet  Google Scholar 

  7. Kailath, T., Sayed, A.H., Hassibi, B.: Linear Estimation. Pearson (2000)

    Google Scholar 

  8. Karam, N., Chausse, F., Aufrere, R., Chapuis, R.: Cooperative multi-vehicle localization. In: 2006 IEEE Intelligent Vehicles Symposium, pp. 564–570 (2006)

    Google Scholar 

  9. Karam, N., Chausse, F., Aufrere, R., Chapuis, R.: Localization of a group of communicating vehicles by state exchange. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 519–524 (2006)

    Google Scholar 

  10. Kia, S.S., Rounds, S., Martanez, S.: Cooperative localization under message dropouts via a partially decentralized EKF scheme. In: 2015 IEEE International Conference on Robotics and Automation, pp. 5977–5982 (2015)

    Google Scholar 

  11. Kia, S.S., Rounds, S.F., Martnez, S.: A centralized-equivalent decentralized implementation of Extended Kalman Filters for cooperative localization. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3761–3766 (2014)

    Google Scholar 

  12. Leung, K.Y., Halpern, Y., Barfoot, T.D., Liu, H.H.: The UTIAS multi-robot cooperative localization and mapping dataset. Int. J. Robot. Res. 30(8), 969–974 (2011)

    Article  Google Scholar 

  13. Li, H., Nashashibi, F., Yang, M.: Split covariance intersection filter: Theory and its application to vehicle localization. IEEE Trans. Intell. Transp. Syst. 14(4), 1860–1871 (2013)

    Google Scholar 

  14. Luft, L., Schubert, T., Roumeliotis, S.I., Burgard, W.: Recursive decentralized collaborative localization for sparsely communicating robots. In: Proceedings of Robotics: Science and Systems (2016)

    Google Scholar 

  15. Mourikis, A.I., Roumeliotis, S.I.: Performance analysis of multirobot cooperative localization. IEEE Trans. Robot. 22(4), 666–681 (2006)

    Article  Google Scholar 

  16. Reinhardt, M., Noack, B., Arambel, P.O., Hanebeck, U.D.: Minimum covariance bounds for the fusion under unknown correlations. IEEE Signal Process. Lett. 22(9), 1210–1214 (2015)

    Article  Google Scholar 

  17. Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)

    Article  Google Scholar 

  18. Saeedi, S., Trentini, M., Seto, M., Li, H.: Multiple-robot simultaneous localization and mapping: A review. J. Field Robot. 33(1), 3–46 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsang-Kai Chang .

Editor information

Editors and Affiliations

Appendix: Auxiliary Lemmas

Appendix: Auxiliary Lemmas

Lemma 1

For \(P > 0\) and the index set I, we have \([P^{-1}]_{I} > {[P]_I}^{-1}\).

Proof

For convenience, we partition P into blocks where the upper-left submatrix is exactly \([P]_{I}\). We denote \(A=[P]_{I}\) for simplicity, which gives \( P = \begin{bmatrix} A &{} B\\ B^{\mathsf {T}} &{} C \end{bmatrix}\). By matrix inversion lemma, we have

$$ P^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(C-B^{\mathsf {T}}A^{-1}B)^{-1}B^{\mathsf {T}}A^{-1} &{} -A^{-1}B(C-B^{\mathsf {T}}A^{-1}B)^{-1} \\ -(C-B^{\mathsf {T}}A^{-1}B)^{-1}B^{\mathsf {T}}A^{-1} &{} (C-B^{\mathsf {T}}A^{-1}B)^{-1} \end{bmatrix}. $$

By assumption, \(P^{-1} > 0\), and thus the diagonal submatrix \((C-B^{\mathsf {T}}A^{-1}B)^{-1} > 0\). In conclusion, we arrive \( [P^{-1}]_{I}= A^{-1} + A^{-1}B(C-B^{\mathsf {T}}A^{-1}B)^{-1}B^{\mathsf {T}}A^{-1} > A^{-1} = [P]_I^{-1}\).

Lemma 2

Suppose that \(P > 0\) and \( P = \begin{bmatrix} A_{m \times m} &{} B\\ B^{\mathsf {T}} &{} C_{n \times n} \end{bmatrix}\), then \(P < P'= \begin{bmatrix} \frac{1}{c}A &{} 0\\ 0 &{} \frac{1}{1-c}C \end{bmatrix}\) for \(c\in (0,1)\).

Proof

Consider a nonzero vector \(v^{\mathsf {T}} =[(1-c) x^{\mathsf {T}}, \, c y^{\mathsf {T}} ] \) where \(x \in \mathbb {R}^m\) and \(y \in \mathbb {R}^n\). Since \(P > 0\), \(v^{\mathsf {T}}P v > 0\), or

$$ (1-c)^2 x^{\mathsf {T}} A x + c^2 y^{\mathsf {T}} C y + c(1-c) y^{\mathsf {T}} B^{\mathsf {T}} x + c(1-c) x^{\mathsf {T}} B y > 0. $$

For arbitrary \(u^{\mathsf {T}} =[ x^{\mathsf {T}}, \, y^{\mathsf {T}} ] \), we then know that

$$ Q= \begin{bmatrix} (1-c)^2 A &{} c(1-c)B\\ c(1-c)B^{\mathsf {T}} &{} c^2 C \end{bmatrix} > 0. $$

The result follows by \(P' - P = \frac{1}{c(1-c)}J Q J > 0\), where \(J = \mathsf {Diag}(I_{m}, -I_{n})\).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, TK., Chen, S., Mehta, A. (2020). Multirobot Cooperative Localization Algorithm with Explicit Communication and Its Topology Analysis. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_46

Download citation

Publish with us

Policies and ethics