Skip to main content

Global Inverse Kinematics via Mixed-Integer Convex Optimization

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

In this paper we present a novel formulation of the inverse kinematics (IK) problem with generic constraints as a mixed-integer convex optimization program. The proposed approach can solve the IK problem globally with generic task space constraints, a major improvement over existing approaches, which either solve the problem in only a local neighborhood of the user initial guess through nonlinear non-convex optimization, or address only a limited set of kinematics constraints. Specifically, we propose a mixed-integer convex relaxation on non-convex SO(3) rotation constraints, and apply this relaxation on the inverse kinematics problem. Our formulation can detect if an instance of the IK problem is globally infeasible, or produce an approximate solution when it is feasible. We show results on a 7-joint arm grasping objects in a cluttered environment, and a quadruped standing on stepping stones. We also compare our approach against the analytical approach for a 6-joint manipulator. The code is open-sourced at https://www.drake.mit.edu [29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems With Bertini, vol. 25. SIAM, Philadelphia (2013)

    Google Scholar 

  2. Beale, E.M.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. Oper. Res. 69, 447–454 (1970)

    Google Scholar 

  3. Beeson, P., Ames, B.: Trac-ik: an open-source library for improved solving of generic inverse kinematics. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 928–935. IEEE, Seoul (2015)

    Google Scholar 

  4. Berenson, D., Srinivasa, S., Kuffner, J.: Task space regions: a framework for pose-constrained manipulation planning. Int. J. Robot. Res. 30(12), 1435–1460 (2011)

    Article  Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming. Athena scientific Belmont, Belmont (1999)

    Google Scholar 

  6. Bertsimas, D., Weismantel, R.: Optimization Over Integers, volume 13. Dynamic Ideas Belmont, Belmont (2005)

    Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  8. Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE J. Robot. Autom. 17(1–19), 16 (2004)

    Google Scholar 

  9. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: an information-rich 3d model repository (2015). arXiv:1512.03012

  10. Craig, J.J.: Introduction to Robotics: Mechanics and Control, vol. 3. Pearson/Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  11. Dai, H., Majumdar, A., Tedrake, R.: Synthesis and optimization of force closure grasps via sequential semidefinite programming. In: International Symposium on Robotics Research (2015)

    Google Scholar 

  12. Dai, H., Valenzuela, A., Tedrake, R.: Whole-body motion planning with centroidal dynamics and full kinematics. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 295–302. IEEE, Madrid (2014)

    Google Scholar 

  13. Deits, R., Tedrake, R.: Footstep planning on uneven terrain with mixed-integer convex optimization. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), IEEE, Madrid (2014)

    Google Scholar 

  14. Deits, R., Tedrake, R.: Efficient mixed-integer planning for uavs in cluttered environments. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Seattle (2015)

    Google Scholar 

  15. Diankov, R.: Automated construction of robotic manipulation programs. Ph.D. thesis, Carnegie Mellon University, Pittsburgh (2010)

    Google Scholar 

  16. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., D’Arpino, C.P., Deits, R., DiCicco, M., Fourie, D., et al.: An architecture for online affordance-based perception and whole-body planning. J. Field Robot. 32(2), 229–254 (2015)

    Article  Google Scholar 

  17. Gurobi optimizer reference manual, vol. 2, pp. 1–3 (2012). http://www.gurobi.com

  18. Haralick, R.M., Joo, H., Lee, C.-N., Zhuang, X., Vaidya, V.G., Kim, M.B.: Pose estimation from corresponding point data. IEEE Trans. Syst. Man Cybern. 19(6), 1426–1446 (1989)

    Article  Google Scholar 

  19. Huchette, J., Vielma, J.P.: Small independent branching formulations for unions of v-polyhedra (2016). arXiv:1607.04803

  20. Manocha, D., Canny, J.F.: Real time inverse kinematics for general 6r manipulators. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 383–389. IEEE, Nice (1992)

    Google Scholar 

  21. Mason, M.T.: Mechanics of Robotic Manipulation. MIT press, Cambridge (2001)

    Google Scholar 

  22. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 477–483. IEEE, St. Paul (2012)

    Google Scholar 

  23. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. 136, 155–182 (2012)

    Google Scholar 

  24. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A mathematical introduction to robotic manipulation. CRC Press, Boca Raton (1994)

    Google Scholar 

  25. Peiper, D.L.: The kinematics of manipulators under computer control. Technical report, Ph.D. thesis, Stanford University, Stanford (1968)

    Google Scholar 

  26. Raghavan, M., Roth, B.: Kinematic analysis of the 6r manipulator of general geometry. In: International Symposium on Robotics Research, pp. 314–320 (1990)

    Google Scholar 

  27. Saunderson, J., Parrilo, P.A., Willsky, A.S.: Semidefinite descriptions of the convex hull of rotation matrices. SIAM J. Optim. 25(3), 1314–1343 (2015)

    Article  MathSciNet  Google Scholar 

  28. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)

    Google Scholar 

  29. Tedrake, R., The Drake Development Team: Drake: a planning, control, and analysis toolbox for nonlinear dynamical systems (2016)

    Google Scholar 

  30. Valenzuela, A.K.: Mixed-integer convex optimization for planning aggressive motions of legged robots over rough terrain. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (2016)

    Google Scholar 

  31. Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128(1), 49–72 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkai Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, H., Izatt, G., Tedrake, R. (2020). Global Inverse Kinematics via Mixed-Integer Convex Optimization. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_56

Download citation

Publish with us

Policies and ethics