Abstract
In this paper we describe a framework towards computing well-localized, robust motion plans through the perception-aware motion planning problem, whereby we seek a low-cost motion plan subject to a separate constraint on perception localization quality. To solve this problem we introduce the Multiobjective Perception-Aware Planning (MPAP) algorithm which explores the state space via a multiobjective search, considering both cost and a perception heuristic. This framework can accommodate a large range of heuristics, allowing those that capture the history dependence of localization drift and represent complex modern perception methods. We present two such heuristics, one derived from a simplified model of robot perception and a second learned from ground-truth sensor error, which we show to be capable of predicting the performance of a state-of-the-art perception system. The solution trajectory from this heuristic-based search is then certified via Monte Carlo methods to be well-localized and robust. The additional computational burden of perception-aware planning is offset by GPU massive parallelization. Through numerical experiments the algorithm is shown to find well-localized, robust solutions in about a second. Finally, we demonstrate MPAP on a quadrotor flying perception-aware and perception-agnostic plans using Google Tango for localization, finding the quadrotor safely executes the perception-aware plan every time, while crashing in over 20% of the perception-agnostic runs due to loss of localization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. (1998)
Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems (2008)
Prentice, S., Roy, N.: The belief roadmap: efficient planning in linear POMDPs by factoring the covariance. Int. J. Robot. Res. (2009)
Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncertainty. In: Proceedings of the IEEE Conference on Robotics and Automation (2011)
van den Berg, J., Patil, S., Alterovitz, R.: Motion planning under uncertainty using iterative local optimization in belief space. Int. J. Robot. Res. (2012)
Patil, S., Kahn, G., Laskeym, M., Schulman, J., Goldberg, K., Abbeel, P.: Scaling up gaussian belief space planning through covariance-free trajectory optimization and automatic differentiation. In: Workshop on Algorithmic Foundations of Robotics (2014)
Indelman, V., Carlone, L., Dellaert, F.: Planning in the continuous domain: a generalized belief space approach for autonomous navigation in unknown environments. Int. J. Robot. Res. (2015)
van den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: optimized path planning for robots with motion uncertainty and imperfect state information. Int. J. Robot. Res. (2011)
Agha-mohammadi, A., Agarwal, S., Chakravorty, S., Amato, N.M.: Simultaneous localization and planning for physical mobile robots via enabling dynamic replanning in belief space. IEEE Trans. Robot. (2016). arXiv:1510.07380 (submitted)
Platt, R., Tedrake, R., Kaelbling, L., Lozano-Perez, T.: Belief space planning assuming maximum likelihood observations. In: Robotics: Science and Systems (2010)
Aloimonos, J., Weiss, I., Brandyopadhyay, A.: Active vision. Int. J. Comput. Vis. (1988)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.: Past, present, and future of simultaneous localization and mapping: towards the robust-perception age. IEEE Trans. Robot. (2016)
Sadat, S.A., Chutskoff, K., Jungic, D., Wawerla, J., Vaughan, R.: Feature-rich path planning for robust navigation of MAVs with Mono-SLAM. In: Proceedings of the IEEE Conference on Robotics and Automation (2014)
Costante, G., Forster, C., Delmerico, J., Valigi, P., Scaramuzza, D.: Perception-aware path planning. IEEE Trans. Robot. (2017). arXiv:1605.04151 (submitted)
Carlone, L., Lyons, D.: Uncertainty-constrained robot exploration: a mixed-integer linear programming approach. In: Proceedings of the IEEE Conference on Robotics and Automation (2014)
Ichter, B., Schmerling, E., Agha-mohammadi, A., Pavone, M.: Real-time stochastic kinodynamic motion planning via multiobjective search on GPUs. In: Proceedings of the IEEE Conference on Robotics and Automation (2017)
Kavraki, L.E., Å vestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional spaces. IEEE Trans. Robot. Autom. (1996)
Amato, N.M., Dale, L.K.: Probabilistic roadmap methods are embarrassingly parallel. In: Proceedings of the IEEE Conference on Robotics and Automation (1999)
Janson, L., Schmerling, E., Pavone, M.: Monte Carlo motion planning for robot trajectory optimization under uncertainty. In: International Symposium on Robotics Research (2015)
Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using active vision. IEEE Trans. Pattern Anal. Mach. Intell. (2002)
Scaramuzza, D., Fraundorfer, F.: Visual odometry part I: the first 30 years and fundamentals. IEEE Robot. Autom. Mag. (2011)
LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
PX4 Development Team: PX4 autopilot. http://px4.io/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ichter, B., Landry, B., Schmerling, E., Pavone, M. (2020). Perception-Aware Motion Planning via Multiobjective Search on GPUs. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_61
Download citation
DOI: https://doi.org/10.1007/978-3-030-28619-4_61
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28618-7
Online ISBN: 978-3-030-28619-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)