Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11700))

Abstract

The problem of explaining complex machine learning models, including Deep Neural Networks, has gained increasing attention over the last few years. While several methods have been proposed to explain network predictions, the definition itself of explanation is still debated. Moreover, only a few attempts to compare explanation methods from a theoretical perspective has been done. In this chapter, we discuss the theoretical properties of several attribution methods and show how they share the same idea of using the gradient information as a descriptive factor for the functioning of a model. Finally, we discuss the strengths and limitations of these methods and compare them with available alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DeepLIFT has been designed specifically for feed-forward neural networks and therefore assumes no multiplicative interactions. The gradient-based formulation generalizes the method to other architectures but does not guarantee meaningful results outside the scope DeepLIFT was designed for.

  2. 2.

    In fact, \(\epsilon \)-LRP and DeepLIFT (Rescale) are not implementation invariant so the result might change depending on the actual implementation of the max function in the network. For example, this can be implemented as a primitive operation (max-pooling) or, for positive numbers, it can be implicitly implemented by a two-layer network with three hidden units: \(y = 0.5 \cdot (ReLU(x_1-x_2) + ReLU(x_2-x_1) + ReLU(x_1+x_2)\). In both cases, our reference implementation [3] produces the same attributions for all gradient-based methods, including \(\epsilon \)-LRP and DeepLIFT (Rescale).

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, pp. 9524–9535 (2018)

    Google Scholar 

  3. Ancona, M., Ceolini, E., Oztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: 6th International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  4. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  5. Balduzzi, D., Frean, M., Leary, L., Lewis, J.P., Ma, K.W.D., McWilliams, B.: The shattered gradients problem: if resnets are the answer, then what is the question? In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, vol. 70, pp. 342–350 (2017). JMLR.org

  6. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv (2017). https://arxiv.org/abs/1702.08608

  7. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3429–3437 (2017)

    Google Scholar 

  8. Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In: AAAI 2019 (2019)

    Article  Google Scholar 

  9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  10. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. In: ICML Workshop on Human Interpretability in Machine Learning (WHI) (2016)

    Google Scholar 

  11. Kindermans, P., Schütt, K., Müller, K., Dähne, S.: Investigating the influence of noise and distractors on the interpretation of neural networks. In: NIPS Workshop on Interpretable Machine Learning in Complex Systems (2016)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  13. Kutner, M.H., Nachtsheim, C., Neter, J.: Applied Linear Regression Models. McGraw-Hill/Irwin, New York (2004)

    Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  15. Lipton, Z.C.: The mythos of model interpretability. In: ICML Workshop on Human Interpretability of Machine Learning (2016)

    Google Scholar 

  16. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 4765–4774 (2017)

    Google Scholar 

  17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  18. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  19. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digital Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  20. Nie, W., Zhang, Y., Patel, A.: A theoretical explanation for perplexing behaviors of back propagation-based visualizations. In: ICML 2018 (2018)

    Google Scholar 

  21. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

    Google Scholar 

  22. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, ACM, New York, NY, USA, pp. 1135–1144 (2016)

    Google Scholar 

  23. Roth, A.E.: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  24. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660–2673 (2017)

    Article  MathSciNet  Google Scholar 

  25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  26. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  27. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, vol. 70, pp. 3145–3153, 06–11 August 2017

    Google Scholar 

  28. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: learning important features through propagating activation differences. arXiv preprint arXiv:1605.01713 (2016)

  29. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  30. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR Workshop (2014)

    Google Scholar 

  31. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. In: ICML Workshop on Visualization for Deep Learning (2017)

    Google Scholar 

  32. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR 2015 Workshop (2015)

    Google Scholar 

  33. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, vol. 70, pp. 3319–3328, 06–11 August 2017

    Google Scholar 

  34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  35. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  36. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. Trans. Assoc. Comput. Linguist. 5, 339–351 (2017)

    Article  Google Scholar 

  37. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  38. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. In: International Conference on Learning Representations (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ancona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ancona, M., Ceolini, E., Öztireli, C., Gross, M. (2019). Gradient-Based Attribution Methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics