Skip to main content

Optical Axis Estimation Method Using Binocular Free Space Optics

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1035))

  • 938 Accesses

Abstract

Based on active free space optics, we designed a binocular device with independent receiver and transmitter using positioning photodiode, quadrant photodiode, and voice coil motor. We proposed the alignment method using five photodiodes for the method of beam alignment. The estimation error of alignment was 30.1 mm. Basic communication experiments were conducted using two binocular devices. It is proved that free space optics communication can be performed by the designed active free space optics device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kantaros, Y., Zavlanos, M.M.: Distributed intermittent connectivity control of mobile robot networks. IEEE Trans. Autom. Control 62(7), 3109–3121 (2017)

    Article  MathSciNet  Google Scholar 

  2. Saulnier, K., Saldaña, D., Prorok, A., Pappas, G.J., Kumar, V.: Resilient flocking for mobile robot teams. IEEE Robot. Autom. Lett. 2(2), 1039–1046 (2017)

    Article  Google Scholar 

  3. Wu, C., Chu, X., Wei, Y., Cui, X.: Regional targeting based millimeter-wave beamforming for robot communication in 5G scenes. In: International Conference on Artificial Intelligence, Automation and Control Technologies, Article No. 14 (2017)

    Google Scholar 

  4. Pratt, W.K.: Laser Communication Systems, p. 196. Wiley, Hoboken (1969)

    Google Scholar 

  5. Ueno, Y., Nagata, R.: An optical communication system using envelope modulation. IEEE Trans. Commun. 20(4), 813 (1972)

    Article  Google Scholar 

  6. Willebrand, H., Ghuman, B.S.: Free-Space Optics: Enabling Optical Connectivity in Today’s Networks. Sams Publishing, Indianapolis (1999)

    Google Scholar 

  7. Nykolak, G., et al.: Update on 4x2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance. In: Optical Wireless Communications II, Proceedings of SPIE, vol. 3850, pp. 11–19 (1999)

    Google Scholar 

  8. Dodley, J.P., et al.: Free space optical technology and distribution architecture for broadband metro and local services. In: Optical Wireless Communications III, Proceedings of SPIE, vol. 4214, pp. 72–85 (2000)

    Google Scholar 

  9. Wang, J., Kahn, J.M.: Acquisition in short-range free-space optical communication. In: Optical Wireless Communications V, Proceedings of SPIE, vol. 4873, pp. 121–132 (2002)

    Google Scholar 

  10. O’Brien, D.C., et al.: Integrated transceivers for optical wireless communications. IEEE J. Sel. Topics Quantum Electron. 11(1), 173–183 (2005)

    Article  Google Scholar 

  11. Minch, J.R., et al.: Adaptive transceivers for mobile free-space optical communications. In: IEEE Military Communications Conference, pp. 1–5 (2006)

    Google Scholar 

  12. Ghimire, R., Mohan, S.: Auto tracking system for free space optical communications. In: 13th International Conference on Transparent Optical Networks, pp. 1–3 (2011)

    Google Scholar 

  13. Yamashita, T., et al.: The new tracking control system for Free-Space Optical Communications. In: International Conference on Space Optical Systems and Applications, pp. 122–131 (2011)

    Google Scholar 

  14. Vitasek, J., et al.: Misalignment loss of free space optic link. In: 16th International Conference on Transparent Optical Networks, pp. 1–5 (2014)

    Google Scholar 

  15. Dubey, S., Kumar, S., Mishra, R.: Simulation and performance evaluation of free space optic transmission system. In: International Conference on Computing for Sustainable Global Development, pp. 850–855 (2014)

    Google Scholar 

  16. Wang, Q., Nguyen, T., Wang, A.X.: Channel capacity optimization for an integrated Wi-Fi and free-space optic communication system. In: 17th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 327–330 (2014)

    Google Scholar 

  17. Kaur, P., Jain, V.K., Kar, S.: Capacity of free space optical links with spatial diversity and aperture averaging. In: 27th Biennial Symposium on Communications, pp. 14–18 (2014)

    Google Scholar 

  18. Tsujimura, T., Yoshida, K.: Active free space optics systems for ubiquitous user networks. In: Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (2004)

    Google Scholar 

  19. Tsujimura, T., Yoshida, K., Shiraki, K., Sankawa, I.: 1310/ 1550 nm SMF-FSO-SMF no-repeater transmission technique with semi-active FSO Nodes. In: 33st European Conference and Exhibition on Optical Communication, pp. 189–190 (2007)

    Google Scholar 

  20. Tanaka, K., Tsujimura, T., Yoshida, K., Katayama, K., Azuma, Y.: Frame-loss-free line switching method for in-service optical access network using interferometry line length measurement. In: Optical Fiber Communication Conference, postdeadline PDPD6 (2009)

    Google Scholar 

  21. Tanaka, K., Tsujimura, T., Yoshida, K., Katayama, K., Azuma, Y.: Frame-loss-free optical line switching system for in-service optical network. J. Lightwave Technol. 28, 539–546 (2009)

    Article  Google Scholar 

  22. Tsujimura, T., Tanaka, K., Yoshida, K., Katayama, K., Azuma, Y.: Infallible layer-one protection switching technique for optical fiber network. In: 14th European Conference on Networks and Optical Communications (2009)

    Google Scholar 

  23. Tsujimura, T., Yoshida, K., Tanaka, K.: Length measurement for optical transmission line using interferometry. Interferometry. InTech (2012). ISBN 978-953-308-459-6

    Google Scholar 

  24. Yoshida, K., Tanaka, K., Tsujimura, T., Azuma, Y.: Assisted focus adjustment for free space optics system coupling single-mode optical fibers. IEEE Trans. Ind. Electron. 60, 5306–5314 (2013)

    Article  Google Scholar 

  25. Tsujimura, T., Muta, S., Masaki, Y., Izumi, K.: Initial alignment scheme and tracking control technique of free space optics laser beam. In: OPICS 2014 (2014)

    Google Scholar 

  26. Tsujimura, T., Izumi, K., Yoshida, K.: Optical axis adjustment of laser beam transmission system. In: Fifth International Conference on Digital Information Processing and Communications, pp. 13–18 (2015)

    Google Scholar 

  27. Tsujimura, T., Suito, Y., Yamamoto, K., Izumi, K.: Spacial laser beam control system for optical robot intercommunication. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (2018)

    Google Scholar 

  28. Tsujimura, T., Izumi1, K., Yoshida, K.: Collaborative all-optical alignment system for free space optics communication. In: INCoS 2018, LNDECT 23, pp. 146–157 (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by Strategic Information and Communications R&D Promotion Program (SCOPE) of Ministry of Internal Affairs and Communications, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Tsujimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamamoto, K., Simogawa, R., Izumi, K., Tsujimura, T. (2020). Optical Axis Estimation Method Using Binocular Free Space Optics. In: Barolli, L., Nishino, H., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2019. Advances in Intelligent Systems and Computing, vol 1035. Springer, Cham. https://doi.org/10.1007/978-3-030-29035-1_24

Download citation

Publish with us

Policies and ethics