Skip to main content

Fiber Bragg Based Sensors for Foot Plantar Pressure Analysis

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2018)

Abstract

Gait analysis is of major importance in physical rehabilitation scenarios, lower limbs diseases diagnosis and prevention. Foot plantar pressure is a key parameter in the gait analysis and its dynamic monitoring is crucial for an accurate assessment of gait related pathologies and/or rehabilitation status evolution. It is therefore critical to invest effort in research for foot plantar analysis technologies. From that perspective, optical fiber sensors appear to be an excellent solution, given their sensing advantages for medical applications, when compared with their electronic counterparts. This chapter explores the use of optical fiber Bragg grating (FBG) sensors, both in plastic and silica optical fiber, to dynamically monitor the foot plantar pressure. An array of FBGs was integrated in a specially designed cork insole, with the optical sensors placed at key pressure points for analysis. Both insoles, containing plastic and silica optical fiber sensors, were tested for dynamic gait monitoring and body center of mass displacement, showing the reliability of this sensing technology for foot plantar pressure monitoring during gait motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domingues, M.F., et al.: Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring. J. Biomed. Opt. 22(9), 91507 (2017)

    Article  Google Scholar 

  2. Korhonen, I., Pärkkä, J., Van Gils, M.: Health monitoring in the home of the future. IEEE Eng. Med. Biol. Mag. 22(3), 66–73 (2003)

    Article  Google Scholar 

  3. Morag, E., Cavanagh, P.R.: Structural and functional predictors of regional peak pressures under the foot during walking. J. Biomech. 32, 359–370 (1999)

    Article  Google Scholar 

  4. Leal-Junior, A.G., Frizera, A., Avellar, L.M., Marques, C., Pontes, M.J.: Polymer optical fiber for in-shoe monitoring of ground reaction forces during the gait. IEEE Sens. J. 18(6), 2362–2368 (2018)

    Article  Google Scholar 

  5. Villa-Parra, A., Delisle-Rodriguez, D., Souza Lima, J., Frizera-Neto, A., Bastos, T.: Knee impedance modulation to control an active orthosis using insole sensors. Sensors 17(12), 2751 (2017)

    Article  Google Scholar 

  6. Hadi, A., Razak, A., Zayegh, A., Begg, R.K., Wahab, Y.: Foot plantar pressure measurement system: a review. Sensors 12, 9884–9912 (2012)

    Article  Google Scholar 

  7. Sanderson, D.J., Franks, I.M., Elliott, D.: The effects of targeting on the ground reaction forces during level walking. Hum. Mov. Sci. 12(3), 327–337 (1993)

    Article  Google Scholar 

  8. Ballaz, L., Raison, M., Detrembleur, C.: Decomposition of the vertical ground reaction forces during gait on a single force plate. J. Musculoskelet. Neuronal Interact. 13(2), 236–243 (2013)

    Google Scholar 

  9. Webb, D.J.: Fibre Bragg grating sensors in polymer optical fibres. Meas. Sci. Technol. 26(9), 92004 (2015)

    Article  Google Scholar 

  10. Zhu, T., Ke, T., Rao, Y., Chiang, K.S.: Fabry-Perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 283(19), 3683–3685 (2010)

    Article  Google Scholar 

  11. Minakawa, K., Mizuno, Y., Nakamura, K.: Cross effect of strain and temperature on Brillouin frequency shift in polymer optical fibers. J. Light. Technol. 35(12), 2481–2486 (2017)

    Article  Google Scholar 

  12. Rajan, G., Noor, Y.M., Liu, B., Ambikairaja, E., Webb, D.J., Peng, G.D.: A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating. Sens. Actuators A Phys. 203, 107–111 (2013)

    Article  Google Scholar 

  13. Zhong, N., Liao, Q., Zhu, X., Zhao, M., Huang, Y., Chen, R.: Temperature-independent polymer optical fiber evanescent wave sensor. Sci. Rep. 5, 1–10 (2015)

    Google Scholar 

  14. Leal-Junior, A., Frizera, A., Marques, C., José Pontes, M.: Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature. Appl. Opt. 57(7), 1717 (2018)

    Article  Google Scholar 

  15. Diaz, C.A.R., et al.: Liquid level measurement based on FBG-embedded diaphragms with temperature compensation. IEEE Sens. J. 18(1), 193–200 (2018)

    Article  Google Scholar 

  16. Ishikawa, R., et al.: Pressure dependence of fiber Bragg grating inscribed in perfluorinated polymer fiber. IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017)

    Article  Google Scholar 

  17. Peters, K.: Polymer optical fiber sensors—a review. Smart Mater. Struct. 20(1), 13002 (2010)

    Article  Google Scholar 

  18. Leal-Junior, A.G., Marques, C., Frizera, A., Pontes, M.J.: Dynamic mechanical analysis on a polymethyl methacrylate (PMMA) polymer optical fiber. IEEE Sens. J. 18(6), 2353–2361 (2018)

    Article  Google Scholar 

  19. Leal-Junior, A., Frizera-Neto, A., Marques, C., Pontes, M.: Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect. Sensors 18(3), 916 (2018)

    Article  Google Scholar 

  20. Liu, Y., Peng, W., Liang, Y., Zhang, X., Zhou, X., Pan, L.: Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement. Opt. Commun. 300, 194–198 (2013)

    Article  Google Scholar 

  21. Mizuno, Y., Hayashi, N., Fukuda, H., Song, K.Y., Nakamura, K.: Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl. 5(12), e16184 (2016)

    Article  Google Scholar 

  22. Perrotton, C., Javahiraly, N., Slaman, M., Dam, B., Meyrueis, P.: Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing. Opt. Express 19(S6), A1175 (2011)

    Article  Google Scholar 

  23. Luo, Y., Yan, B., Zhang, Q., Peng, G.-D., Wen, J., Zhang, J.: Fabrication of polymer optical fibre (POF) gratings. Sensors 17(3), 511 (2017)

    Article  Google Scholar 

  24. Theodosiou, A., Lacraz, A., Stassis, A., Koutsides, C., Komodromos, M., Kalli, K.: Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fiber. J. Light. Technol. 35(24), 5404–5410 (2017)

    Article  Google Scholar 

  25. Cusano, A., Cutolo, A., Albert, J.: Fiber Bragg Grating Sensors: Market Overview and New Perspectives. Bentham Science Publishers, Potomac (2009)

    Google Scholar 

  26. Ashby, M.F.: Materials Selection in Mechanical Design. Elsevier, Cambridge (2005)

    Google Scholar 

  27. Abboud, R.J.: (i) relevant foot biomechanics. Orthopaedics 16, 165–179 (2002)

    Google Scholar 

  28. Kirtley, C.: Clinical Gait Analysis: Theory and Practice. Elsevier, Philadelphia (2006)

    Google Scholar 

  29. Liu, Y., Lu, K., Yan, S., Sun, M., Lester, D.K., Zhang, K.: Gait phase varies over velocities. Gait Posture 39(2), 756–760 (2014)

    Article  Google Scholar 

  30. Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D.D., Tao, X.: In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 14(3), 767–775 (2010)

    Article  Google Scholar 

  31. Vilarinho, D., et al.: POFBG-embedded cork insole for plantar pressure monitoring. Sensors 17(12), 2924 (2017)

    Article  Google Scholar 

  32. Vilarinho, D., et al.: Foot plantar pressure monitoring with CYTOP Bragg Gratings sensing system. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 1, no. Biostec, pp. 25–29 (2018)

    Google Scholar 

  33. Thorlabs, Graded-Index Polymer Optical Fiber (GI-POF). https://www.thorlabs.com/catalogPages/1100.pdf. Accessed 17 May 2018

  34. Antunes, P., Domingues, F., Granada, M., André, P.: Mechanical properties of optical fibers, pp. 1–15. INTECH Open Access Publisher (2012)

    Google Scholar 

  35. Suresh, R., Bhalla, S., Hao, J., Singh, C.: Development of a high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors. Technol. Health Care 23, 785–794 (2015)

    Article  Google Scholar 

  36. Domingues, M.F., et al.: Insole optical fiber sensor architecture for remote gait analysis - an eHealth solution. IEEE Internet Things J. 6, 207–214 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

CAPES (88887.095626/2015-01); FAPES (72982608); CNPq (304192/2016-3 and 310310/2015-6); FCT (SFRH/BPD/101372/2014 and SFRH/ BPD/109458/2015); Fundação para Ciência e a Tecnologia/Ministério da Educação e Ciência (UID/EEA/50008/2013); European Regional Development Fund (PT2020 Partnership Agreement); FCT, IT-LA (PREDICT scientific action); Fundamental Research Funds for the Heilongjiang Provincial Universities (KJCXZD201703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leal-Junior, A.G. et al. (2019). Fiber Bragg Based Sensors for Foot Plantar Pressure Analysis. In: Cliquet Jr., A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2018. Communications in Computer and Information Science, vol 1024. Springer, Cham. https://doi.org/10.1007/978-3-030-29196-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29196-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29195-2

  • Online ISBN: 978-3-030-29196-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics