Abstract
Gait analysis is of major importance in physical rehabilitation scenarios, lower limbs diseases diagnosis and prevention. Foot plantar pressure is a key parameter in the gait analysis and its dynamic monitoring is crucial for an accurate assessment of gait related pathologies and/or rehabilitation status evolution. It is therefore critical to invest effort in research for foot plantar analysis technologies. From that perspective, optical fiber sensors appear to be an excellent solution, given their sensing advantages for medical applications, when compared with their electronic counterparts. This chapter explores the use of optical fiber Bragg grating (FBG) sensors, both in plastic and silica optical fiber, to dynamically monitor the foot plantar pressure. An array of FBGs was integrated in a specially designed cork insole, with the optical sensors placed at key pressure points for analysis. Both insoles, containing plastic and silica optical fiber sensors, were tested for dynamic gait monitoring and body center of mass displacement, showing the reliability of this sensing technology for foot plantar pressure monitoring during gait motion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Domingues, M.F., et al.: Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring. J. Biomed. Opt. 22(9), 91507 (2017)
Korhonen, I., Pärkkä, J., Van Gils, M.: Health monitoring in the home of the future. IEEE Eng. Med. Biol. Mag. 22(3), 66–73 (2003)
Morag, E., Cavanagh, P.R.: Structural and functional predictors of regional peak pressures under the foot during walking. J. Biomech. 32, 359–370 (1999)
Leal-Junior, A.G., Frizera, A., Avellar, L.M., Marques, C., Pontes, M.J.: Polymer optical fiber for in-shoe monitoring of ground reaction forces during the gait. IEEE Sens. J. 18(6), 2362–2368 (2018)
Villa-Parra, A., Delisle-Rodriguez, D., Souza Lima, J., Frizera-Neto, A., Bastos, T.: Knee impedance modulation to control an active orthosis using insole sensors. Sensors 17(12), 2751 (2017)
Hadi, A., Razak, A., Zayegh, A., Begg, R.K., Wahab, Y.: Foot plantar pressure measurement system: a review. Sensors 12, 9884–9912 (2012)
Sanderson, D.J., Franks, I.M., Elliott, D.: The effects of targeting on the ground reaction forces during level walking. Hum. Mov. Sci. 12(3), 327–337 (1993)
Ballaz, L., Raison, M., Detrembleur, C.: Decomposition of the vertical ground reaction forces during gait on a single force plate. J. Musculoskelet. Neuronal Interact. 13(2), 236–243 (2013)
Webb, D.J.: Fibre Bragg grating sensors in polymer optical fibres. Meas. Sci. Technol. 26(9), 92004 (2015)
Zhu, T., Ke, T., Rao, Y., Chiang, K.S.: Fabry-Perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 283(19), 3683–3685 (2010)
Minakawa, K., Mizuno, Y., Nakamura, K.: Cross effect of strain and temperature on Brillouin frequency shift in polymer optical fibers. J. Light. Technol. 35(12), 2481–2486 (2017)
Rajan, G., Noor, Y.M., Liu, B., Ambikairaja, E., Webb, D.J., Peng, G.D.: A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating. Sens. Actuators A Phys. 203, 107–111 (2013)
Zhong, N., Liao, Q., Zhu, X., Zhao, M., Huang, Y., Chen, R.: Temperature-independent polymer optical fiber evanescent wave sensor. Sci. Rep. 5, 1–10 (2015)
Leal-Junior, A., Frizera, A., Marques, C., José Pontes, M.: Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature. Appl. Opt. 57(7), 1717 (2018)
Diaz, C.A.R., et al.: Liquid level measurement based on FBG-embedded diaphragms with temperature compensation. IEEE Sens. J. 18(1), 193–200 (2018)
Ishikawa, R., et al.: Pressure dependence of fiber Bragg grating inscribed in perfluorinated polymer fiber. IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017)
Peters, K.: Polymer optical fiber sensors—a review. Smart Mater. Struct. 20(1), 13002 (2010)
Leal-Junior, A.G., Marques, C., Frizera, A., Pontes, M.J.: Dynamic mechanical analysis on a polymethyl methacrylate (PMMA) polymer optical fiber. IEEE Sens. J. 18(6), 2353–2361 (2018)
Leal-Junior, A., Frizera-Neto, A., Marques, C., Pontes, M.: Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect. Sensors 18(3), 916 (2018)
Liu, Y., Peng, W., Liang, Y., Zhang, X., Zhou, X., Pan, L.: Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement. Opt. Commun. 300, 194–198 (2013)
Mizuno, Y., Hayashi, N., Fukuda, H., Song, K.Y., Nakamura, K.: Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl. 5(12), e16184 (2016)
Perrotton, C., Javahiraly, N., Slaman, M., Dam, B., Meyrueis, P.: Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing. Opt. Express 19(S6), A1175 (2011)
Luo, Y., Yan, B., Zhang, Q., Peng, G.-D., Wen, J., Zhang, J.: Fabrication of polymer optical fibre (POF) gratings. Sensors 17(3), 511 (2017)
Theodosiou, A., Lacraz, A., Stassis, A., Koutsides, C., Komodromos, M., Kalli, K.: Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fiber. J. Light. Technol. 35(24), 5404–5410 (2017)
Cusano, A., Cutolo, A., Albert, J.: Fiber Bragg Grating Sensors: Market Overview and New Perspectives. Bentham Science Publishers, Potomac (2009)
Ashby, M.F.: Materials Selection in Mechanical Design. Elsevier, Cambridge (2005)
Abboud, R.J.: (i) relevant foot biomechanics. Orthopaedics 16, 165–179 (2002)
Kirtley, C.: Clinical Gait Analysis: Theory and Practice. Elsevier, Philadelphia (2006)
Liu, Y., Lu, K., Yan, S., Sun, M., Lester, D.K., Zhang, K.: Gait phase varies over velocities. Gait Posture 39(2), 756–760 (2014)
Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D.D., Tao, X.: In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 14(3), 767–775 (2010)
Vilarinho, D., et al.: POFBG-embedded cork insole for plantar pressure monitoring. Sensors 17(12), 2924 (2017)
Vilarinho, D., et al.: Foot plantar pressure monitoring with CYTOP Bragg Gratings sensing system. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 1, no. Biostec, pp. 25–29 (2018)
Thorlabs, Graded-Index Polymer Optical Fiber (GI-POF). https://www.thorlabs.com/catalogPages/1100.pdf. Accessed 17 May 2018
Antunes, P., Domingues, F., Granada, M., André, P.: Mechanical properties of optical fibers, pp. 1–15. INTECH Open Access Publisher (2012)
Suresh, R., Bhalla, S., Hao, J., Singh, C.: Development of a high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors. Technol. Health Care 23, 785–794 (2015)
Domingues, M.F., et al.: Insole optical fiber sensor architecture for remote gait analysis - an eHealth solution. IEEE Internet Things J. 6, 207–214 (2017)
Acknowledgments
CAPES (88887.095626/2015-01); FAPES (72982608); CNPq (304192/2016-3 and 310310/2015-6); FCT (SFRH/BPD/101372/2014 and SFRH/ BPD/109458/2015); Fundação para Ciência e a Tecnologia/Ministério da Educação e Ciência (UID/EEA/50008/2013); European Regional Development Fund (PT2020 Partnership Agreement); FCT, IT-LA (PREDICT scientific action); Fundamental Research Funds for the Heilongjiang Provincial Universities (KJCXZD201703).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Leal-Junior, A.G. et al. (2019). Fiber Bragg Based Sensors for Foot Plantar Pressure Analysis. In: Cliquet Jr., A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2018. Communications in Computer and Information Science, vol 1024. Springer, Cham. https://doi.org/10.1007/978-3-030-29196-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-29196-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29195-2
Online ISBN: 978-3-030-29196-9
eBook Packages: Computer ScienceComputer Science (R0)