Abstract
In process-oriented case-based reasoning, similarity-based retrieval of workflow cases from large case bases is still a difficult issue due to the computationally expensive similarity assessment. The two-phase MAC/FAC (“Many are called, but few are chosen”) retrieval has been proven useful to reduce the retrieval time but comes at the cost of an additional modeling effort for implementing the MAC phase. In this paper, we present a new approach to implement the MAC phase for POCBR retrieval, which makes use of the StarSpace embedding algorithm to automatically learn a vector representation for workflows, which can be used to significantly speed-up the MAC retrieval phase. In an experimental evaluation in the domain of cooking workflows, we show that the presented approach outperforms two existing MAC/FAC approaches on the same data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amin, K., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Answering with cases: a CBR approach to deep learning. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 15–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_2
Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)
Bergmann, R., Lenz, M., Ollinger, S., Pfister, M.: Similarity measures for case-based retrieval of natural language argument graphs in argumentation machines. In: Barták, R., Brawner, K.W. (eds.) Proceedings of the Thirty-Two International Florida Artificial Intelligence Research Society Conference, FLAIRS 2019, Florida, pp. 329–334. AAAI Press, 19–22 May 2019. https://dblp.uni-trier.de/rec/bibtex1/conf/flairs/BergmannLO019
Bergmann, R., Stahl, A.: Similarity measures for object-oriented case representations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 25–36. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056319
Bergmann, R., Stromer, A.: MAC/FAC retrieval of semantic workflows. In: Boonthum-Denecke, C., Youngblood, G.M. (eds.) Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2013, Florida, 22–24 May. AAAI Press (2013). http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS13/paper/view/5834
Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)
Dalal, S., Athavale, V., Jindal, K.: Case retrieval optimization of case-based reasoning through knowledge-intensive similarity measures. Int. J. Comput. Appl. 34(3), 12–18 (2011)
Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.): Process-Aware Information Systems: Bridging People and Software Through Process Technology. Wiley, Hoboken (2005)
Forbus, K.D., Gentner, D., Law, K.: MAC/FAC: a model of similarity-based retrieval. Cognit. Sci. 19(2), 141–205 (1995)
Hollingsworth, D.: Workflow management coalition - the workflow reference model: Document Number TC00-1003 - Version 1.1 (1995)
Kendall-Morwick, J., Leake, D.B.: A study of two-phase retrieval for process-oriented case-based reasoning. In: Montani, S., Jain, L. (eds.) Successful Case-based Reasoning Applications-2. SCI, vol. 494, pp. 7–27. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-38736-4_2
Kendall-Morwick, J., Leake, D.B.: On tuning two-phase retrieval for structured cases. In: ICCBR-Workshop on Process-Oriented CBR, Lyon, pp. 25–34 (2012)
Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June, California, Proceedings of Machine Learning Research, vol. 97, pp. 3835–3845. PMLR (2019)
Metcalf, K., Leake, D.B.: Embedded word representations for rich indexing: a case study for medical records. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 264–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_18
Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based reasoning. Inf. Syst. 40, 103–105 (2014)
Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Inf. Syst. 40, 128–141 (2014)
Müller, G., Bergmann, R.: A cluster-based approach to improve similarity-based retrieval for process-oriented case-based reasoning. In: ECAI 2014–21st European Conference on Artificial Intelligence, pp. 639–644. IOS Press (2014)
Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-658-23559-8
Schumacher, J., Bergmann, R.: An efficient approach to similarity-based retrieval on top of relational databases. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 273–285. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44527-7_24
Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural knowledge from the web: a comparison of two workflow extraction approaches. In: Proceedings of the 21st World Wide Web Conference, pp. 739–747. ACM (2012)
Terada, E.: The writer’s mentor. In: Proceedings of ICCBR 2018 Workshops Co-located with the 26th International Conference, ICCBR 2018, Sweden, July 9–12, pp. 229–233 (2018)
Wu, L.Y., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: Starspace: embed all the things! In: McIlraith, S.A., Weinberger, K.Q. (eds.) Thirty-Second AAAI Conference on Artificial Intelligence, pp. 5569–5577 (2018). https://dblp.uni-trier.de/rec/bibtex/conf/aaai/WuFCABW18
Acknowledgments
This work is funded by the German Research Foundation (DFG) under grant No. BE 1373/3-3.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Klein, P., Malburg, L., Bergmann, R. (2019). Learning Workflow Embeddings to Improve the Performance of Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning. In: Bach, K., Marling, C. (eds) Case-Based Reasoning Research and Development. ICCBR 2019. Lecture Notes in Computer Science(), vol 11680. Springer, Cham. https://doi.org/10.1007/978-3-030-29249-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-29249-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29248-5
Online ISBN: 978-3-030-29249-2
eBook Packages: Computer ScienceComputer Science (R0)