Skip to main content

Learning Workflow Embeddings to Improve the Performance of Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2019)

Abstract

In process-oriented case-based reasoning, similarity-based retrieval of workflow cases from large case bases is still a difficult issue due to the computationally expensive similarity assessment. The two-phase MAC/FAC (“Many are called, but few are chosen”) retrieval has been proven useful to reduce the retrieval time but comes at the cost of an additional modeling effort for implementing the MAC phase. In this paper, we present a new approach to implement the MAC phase for POCBR retrieval, which makes use of the StarSpace embedding algorithm to automatically learn a vector representation for workflows, which can be used to significantly speed-up the MAC retrieval phase. In an experimental evaluation in the domain of cooking workflows, we show that the presented approach outperforms two existing MAC/FAC approaches on the same data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/TR/2014/REC-turtle-20140225/.

  2. 2.

    http://procake.uni-trier.de.

  3. 3.

    https://github.com/facebookresearch/StarSpace.

  4. 4.

    https://allrecipes.com/.

References

  1. Amin, K., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Answering with cases: a CBR approach to deep learning. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 15–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_2

    Chapter  Google Scholar 

  2. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)

    Article  Google Scholar 

  3. Bergmann, R., Lenz, M., Ollinger, S., Pfister, M.: Similarity measures for case-based retrieval of natural language argument graphs in argumentation machines. In: Barták, R., Brawner, K.W. (eds.) Proceedings of the Thirty-Two International Florida Artificial Intelligence Research Society Conference, FLAIRS 2019, Florida, pp. 329–334. AAAI Press, 19–22 May 2019. https://dblp.uni-trier.de/rec/bibtex1/conf/flairs/BergmannLO019

  4. Bergmann, R., Stahl, A.: Similarity measures for object-oriented case representations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 25–36. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056319

    Chapter  Google Scholar 

  5. Bergmann, R., Stromer, A.: MAC/FAC retrieval of semantic workflows. In: Boonthum-Denecke, C., Youngblood, G.M. (eds.) Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2013, Florida, 22–24 May. AAAI Press (2013). http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS13/paper/view/5834

  6. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  7. Dalal, S., Athavale, V., Jindal, K.: Case retrieval optimization of case-based reasoning through knowledge-intensive similarity measures. Int. J. Comput. Appl. 34(3), 12–18 (2011)

    Google Scholar 

  8. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.): Process-Aware Information Systems: Bridging People and Software Through Process Technology. Wiley, Hoboken (2005)

    Google Scholar 

  9. Forbus, K.D., Gentner, D., Law, K.: MAC/FAC: a model of similarity-based retrieval. Cognit. Sci. 19(2), 141–205 (1995)

    Article  Google Scholar 

  10. Hollingsworth, D.: Workflow management coalition - the workflow reference model: Document Number TC00-1003 - Version 1.1 (1995)

    Google Scholar 

  11. Kendall-Morwick, J., Leake, D.B.: A study of two-phase retrieval for process-oriented case-based reasoning. In: Montani, S., Jain, L. (eds.) Successful Case-based Reasoning Applications-2. SCI, vol. 494, pp. 7–27. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-38736-4_2

    Chapter  Google Scholar 

  12. Kendall-Morwick, J., Leake, D.B.: On tuning two-phase retrieval for structured cases. In: ICCBR-Workshop on Process-Oriented CBR, Lyon, pp. 25–34 (2012)

    Google Scholar 

  13. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June, California, Proceedings of Machine Learning Research, vol. 97, pp. 3835–3845. PMLR (2019)

    Google Scholar 

  14. Metcalf, K., Leake, D.B.: Embedded word representations for rich indexing: a case study for medical records. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 264–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_18

    Chapter  Google Scholar 

  15. Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based reasoning. Inf. Syst. 40, 103–105 (2014)

    Article  Google Scholar 

  16. Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Inf. Syst. 40, 128–141 (2014)

    Article  Google Scholar 

  17. Müller, G., Bergmann, R.: A cluster-based approach to improve similarity-based retrieval for process-oriented case-based reasoning. In: ECAI 2014–21st European Conference on Artificial Intelligence, pp. 639–644. IOS Press (2014)

    Google Scholar 

  18. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-658-23559-8

    Book  Google Scholar 

  19. Schumacher, J., Bergmann, R.: An efficient approach to similarity-based retrieval on top of relational databases. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 273–285. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44527-7_24

    Chapter  Google Scholar 

  20. Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural knowledge from the web: a comparison of two workflow extraction approaches. In: Proceedings of the 21st World Wide Web Conference, pp. 739–747. ACM (2012)

    Google Scholar 

  21. Terada, E.: The writer’s mentor. In: Proceedings of ICCBR 2018 Workshops Co-located with the 26th International Conference, ICCBR 2018, Sweden, July 9–12, pp. 229–233 (2018)

    Google Scholar 

  22. Wu, L.Y., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: Starspace: embed all the things! In: McIlraith, S.A., Weinberger, K.Q. (eds.) Thirty-Second AAAI Conference on Artificial Intelligence, pp. 5569–5577 (2018). https://dblp.uni-trier.de/rec/bibtex/conf/aaai/WuFCABW18

Download references

Acknowledgments

This work is funded by the German Research Foundation (DFG) under grant No. BE 1373/3-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Klein , Lukas Malburg or Ralph Bergmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klein, P., Malburg, L., Bergmann, R. (2019). Learning Workflow Embeddings to Improve the Performance of Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning. In: Bach, K., Marling, C. (eds) Case-Based Reasoning Research and Development. ICCBR 2019. Lecture Notes in Computer Science(), vol 11680. Springer, Cham. https://doi.org/10.1007/978-3-030-29249-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29249-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29248-5

  • Online ISBN: 978-3-030-29249-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics