Skip to main content

Combining Diffusion Processes for Semi-supervised Learning on Graph Structured Data

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1038))

Included in the following conference series:

  • 2339 Accesses

Abstract

Artificial neural networks have proven to be one of the most effective algorithms for learning and predicting information from data. Data come in many formats depending on the source and the nature of the phenomenon they pertain to. Numerous neural network models were proposed to handle the different data formats as efficiently as possible. One of the more abstract data format is graph structured data. We propose the Combined Graph Diffusion Embedding Network (CGDEN). The model combines two diffusion models to exploit the features of the graph nodes as well as the underlying structure of the graph. The model’s performance was test in a node classification problem in semi-supervised setting, where only a fraction on the node labels were available in the training phase. Two benchmarking citation network datasets (Cora and Citeseer) were used to validate the model. The accuracy of the proposed model in node classification exceeded that of the previous models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.E.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: Proceedings of the 4th International Workshop on Inductive Logic Programming, vol. 237, pp. 217–232 (1994)

    Google Scholar 

  2. Baldi, P., Pollastri, G.: The principled design of large-scale recursive neural network architectures–DAG-RNNs and the protein structure prediction problem. J. Mach. Learn. Res. 4, 575–602 (2003)

    MATH  Google Scholar 

  3. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502 (2006)

    Article  Google Scholar 

  4. Redondi, A.E.C.: Radio map interpolation using graph signal processing. IEEE Commun. Lett. 22, 153–156 (2017)

    Article  Google Scholar 

  5. Velickovic, P., et al.: Graph attention networks. arXiv preprint arXiv:1710.10903, January 2017

  6. Bua, A., Gori, M., Santini, F.: Recursive neural networks applied to discourse representation theory. In: International Conference on Artificial Neural Networks, pp. 290–295 (2002)

    Chapter  Google Scholar 

  7. Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs: frequency analysis. IEEE Trans. Sign. Process. 62, 3042–3054 (2014)

    Article  MathSciNet  Google Scholar 

  8. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861 (2016)

  9. Donoser, M., Bischof, H.: Diffusion processes for retrieval revisited. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1320–1327 (2013). https://doi.org/10.1109/cvpr.2013.174

  10. Zhou, L., Yang, Z., Yuan, Q., Zhou, Z., Hu, D.: Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans. Image Process. 24, 3308–3320 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 729–734 (2005)

    Google Scholar 

  12. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw./Publ. IEEE Neural Netw. Counc. 20, 61–80 (2009)

    Article  Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  14. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  15. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)

  16. Liao, R., et al.: Graph partition neural networks for semi-supervised classification. arXiv preprint arXiv:1803.06272 (2018)

  17. Thekumparampil, K.K., Wang, C., Oh, S., Li, L.-J.: Attention-based graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735 (2018)

  18. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  19. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

  20. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  21. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  22. Yadati, N., Nimishakavi, M., Yadav, P., Louis, A., Talukdar, P.: HyperGCN: hypergraph convolutional networks for semi-supervised classification. arXiv preprint arXiv:1809.02589 (2018)

  23. Abu-El-Haija, S., Kapoor, A., Perozzi, B., Lee, J.: N-GCN: multi-scale graph convolution for semi-supervised node classification. arXiv preprint arXiv:1802.08888 (2018)

  24. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  25. Vaswani, A., et al.: Attention is all you need. in Advances in Neural Information Processing Systems 5998–6008 (2017)

    Google Scholar 

  26. Zhang, J., et al.: GaAN: gated attention networks for learning on large and spatiotemporal graphs. arXiv preprint arXiv:1803.07294 (2018)

  27. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 912–919 (2003)

    Google Scholar 

  28. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  29. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised embedding. In: Neural Networks: Tricks of the Trade, pp. 639–655, Springer (2012)

    Google Scholar 

  31. Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 496–503 (2003)

    Google Scholar 

  32. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  33. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans. Knowl. Data Eng. 30, 1616–1637 (2018)

    Article  Google Scholar 

  34. Jiang, B., Lin, D., Tang, J.: Graph diffusion-embedding networks. arXiv preprint arXiv:1810.00797 (2018)

  35. Sen, P., et al.: Collective classification in network data. AI Mag. 29, 93 (2008)

    Article  Google Scholar 

  36. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)

  38. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  39. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1993–2001 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Al-Gafri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Gafri, A., Moinuddin, M., Al-Saggaf, U.M. (2020). Combining Diffusion Processes for Semi-supervised Learning on Graph Structured Data. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_40

Download citation

Publish with us

Policies and ethics