Abstract
This document presents the enforcement of a facial gesture recognition system through applying a convolutional neural network algorithm for gesticulation of an interactive social robot with humanoid appearance, which was designed in order to accomplish the thematic proposed. Furthermore, it is incorporated into it a hearing communication system for Human-Robot interaction throughout the use of visemes, by coordinating the robot’s mouth movement with the processed audio of the text converted to the robot’s voice (text to speech). The precision achieved by the convolutional neural network incorporated in the social-interactive robot is 61%, while the synchronization system between the robot’s mouth and the robot’s audio-voice differs from 0.1 s. In this manner, it is pretended to endow mechanisms social robots for a more naturally interaction with people, thus facilitating the appliance of them in the fields of children’s teaching-learning, medical therapies and as entertainment means.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barnes, J., FakhrHosseini, M., Jeon, M., Park, C.-H., Howard, A.: The influence of robot design on acceptance of social robots. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 51–55. IEEE, Jeju (2017)
Mead, R., Mataric, M.J.: Autonomous human-robot proxemics: a robot-centered approach. In: The Eleventh ACM/IEEE International Conference on Human Robot Interaction, p. 573. IEEE Press (2016)
Rubio Benavides, J.A.: Disenño y construcción de un robot interactivo para el tratamiento de personas con el trastorno del espectro autista (TEA), Universidad de las Fuerzas Armadas (ESPE) (2016)
Sojib, N., Islam, S., Rupok, M.H., Hasan, S., Amin, M.R., Iqbal, M.Z.: Design and development of the social humanoid robot named Ribo. In: 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 314–317. IEEE, Dhaka (2017)
Lapusan, C., Rad, C.-R., Besoiu, S., Plesa, A.: Design of a humanoid robot head for studying human-robot interaction. In: 2015 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. WR-15-WR-18. IEEE, Bucharest (2015)
Chen, L., Zhou, M., Su, W., Wu, M., She, J., Hirota, K.: Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction. Inf. Sci. 428, 49–61 (2018)
Faria, D.R., Vieira, M., Faria, F.C.C., Premebida, C.: Affective facial expressions recognition for human-robot interaction. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 805–810. IEEE, Lisbon (2017)
Chen, J., Chen, Z., Chi, Z., Fu, H.: Facial expression recognition based on facial components detection and hog features. In: International Workshops on Electrical and Computer Engineering Subfields, pp. 884–888, Istanbul (2014)
Soni, L.N., Datar, A., Datar, S.: Implementation of Viola-Jones algorithm based approach for human face detection. Int. J. Curr. Eng. Technol. 7, 1819–1823 (2017)
Fernández, R., Montes, H. (eds.): RoboCity16 Open Conference on Future Trends in Robotics. Consejo Superior de Investigaciones Cientificas, Madrid (2016)
Cheng, H., Ji, G.: Design and implementation of a low cost 3D printed humanoid robotic platform. In: 2016 IEEE International Conference on Cyber Technology in Automation. Control, and Intelligent Systems (CYBER), pp. 86–91. IEEE, Chengdu (2016)
Le, T.-L., Dong, V.-T.: Toward a Vietnamese facial expression recognition system for human-robot interaction. In: The 2011 International Conference on Advanced Technologies for Communications (ATC 2011), pp. 252–255. IEEE, Da Nang (2011)
Nakaoka, S., Kanehiro, F., Miura, K., Morisawa, M., Fujiwara, K., Kaneko, K., Kajita, S., Hirukawa, H.: Creating facial motions of cybernetic human HRP-4C. In: 2009 9th IEEE-RAS International Conference on Humanoid Robots, pp. 561–567. IEEE, Paris (2009)
Wang, K., Li, R., Zhao, L.: Real-time facial expressions recognition system for service robot based-on ASM and SVMs. In: 2010 8th World Congress on Intelligent Control and Automation, pp. 6637–6641. IEEE, Jinan (2010)
Deng, J., Pang, G., Zhang, Z., Pang, Z., Yang, H., Yang, G.: cGAN based Facial Expression Recognition for Human-Robot Interaction. IEEE Access. 7, 9848–9859 (2019). https://doi.org/10.1109/ACCESS.2019.2891668
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)
Kumar, P., Happy, S.L., Routray, A.: A real-time robust facial expression recognition system using HOG features. In: 2016 International Conference on Computing. Analytics and Security Trends (CAST), pp. 289–293. IEEE, Pune (2016)
Meghdari, A., Shouraki, S.B., Siamy, A., Shariati, A.: The real-time facial imitation by a social humanoid robot. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM), pp. 524–529. IEEE, Tehran (2016)
Fernandez, M.C.D., Gob, K.J.E., Leonidas, A.R.M., Ravara, R.J.J., Bandala, A.A., Dadios, E.P.: Simultaneous face detection and recognition using Viola-Jones Algorithm and Artificial Neural Networks for identity verification. In: 2014 IEEE Region 10 Symposium, pp. 672–676. IEEE, Kuala Lumpur (2014)
Wang, Y.-Q.: An analysis of the Viola-Jones face detection algorithm. Image Process. On Line 4, 128–148 (2014)
Sang, D.V., Van Dat, N., Thuan, D.P.: Facial expression recognition using deep convolutional neural networks. In: 2017 9th International Conference on Knowledge and Systems Engineering (KSE), pp. 130–135. IEEE, Hue (2017)
Ashwin, T.S., Jose, J., Raghu, G., Reddy, G.R.M.: An E-learning system with multifacial emotion recognition using supervised machine learning. In: 2015 IEEE Seventh International Conference on Technology for Education (T4E), pp. 23–26. IEEE, Warangal (2015)
Vu, T.H., Nguyen, L., Guo, T., Monga, V.: Deep network for simultaneous decomposition and classification in UWB-SAR imagery. In: 2018 IEEE Radar Conference (RadarConf18), pp. 0553–0558. IEEE, Oklahoma City (2018)
Khan, S., Rahmani, H., Shah, S.A., Bennamoun, M.: A guide to convolutional neural networks for computer vision. Synth. Lect. Comput. Vis. 8, 1–207 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 [cs]. (2014)
Deng, X., Liu, Q., Deng, Y., Mahadevan, S.: An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf. Sci. 340–341, 250–261 (2016)
Liu, L., Li, B., Chen, I.-M., Goh, T.J., Sung, M.: Interactive robots as social partner for communication care. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2231–2236. IEEE, Hong Kong (2014)
Encalada, P., Alvarado, B., Matia, F.: Facial expressions and voice control of an interacive robot” Robocity, Chap. 27 (2016)
Acknowledgment
The authors thank the Technical University of Ambato and the “Dirección de Investigación y Desarrollo” (DIDE) for their support in carrying out this research, in the execution of the project “Plataforma Móvil Omnidireccional KUKA dotada de Inteligencia Artificial utilizando estrategias de Machine Learnig para Navegación Segura en Espacios no Controlados”, project code: PFISEI27.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Arias, E., Encalada, P., Tigre, F., Granizo, C., Gordon, C., Garcia, M.V. (2020). Convolutional Neural Network Applied to the Gesticulation Control of an Interactive Social Robot with Humanoid Aspect. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_76
Download citation
DOI: https://doi.org/10.1007/978-3-030-29513-4_76
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29512-7
Online ISBN: 978-3-030-29513-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)