Skip to main content

Robustness of Keystroke Dynamics Identification Algorithms Against Brain-Wave Variations Associated with Emotional Variations

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1037))

Included in the following conference series:

Abstract

Keystroke dynamics facilitates the identification of a person by the way they type. This article focuses on analysing the robustness of keystroke dynamics algorithms against variations in biometric records through electroencephalography, using waves associated with states of relaxation and excitement and a self-report questionnaire. An experiment was conducted to capture keystroke patterns in different affective states. The results suggested specific classification distances such as A and R metrics, Canberra distance and two Minkowski-based distances have their accuracy slightly and negatively influenced by changing moods. Euclidean distance seemed to be the least affected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code of the experiment can be downloaded from https://github.com/lsia/pocs.

References

  1. Gladwell, M., Ruiter, M.E.: Blink: The Power of Thinking Without Thinking. Little, Brown, Boston (2008). ISBN 978-0-316-00504-3

    Google Scholar 

  2. Stockton Gaines, R., Lisowski, W., James Press, S., Shapiro, N.: Authentication by keystroke timing: some preliminary results. Technical report, DTIC Document (1980)

    Google Scholar 

  3. Polemi, D.: Biometric techniques: review and evaluation of biometric techniques for identification and authentication, including an appraisal of the areas where they are most applicable. Reported prepared for the European Commision DG XIIIC, 4 (1997)

    Google Scholar 

  4. Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(3), 312–347 (2005). https://doi.org/10.1145/1085126.1085129. ISSN 1094-9224

    Article  MATH  Google Scholar 

  5. Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., Xu, X., Yang, X.: A review of emotion recognition using physiological signals. Sensors 18(7), (2018). https://doi.org/10.3390/s18072074. ISSN 1424-8220

    Article  Google Scholar 

  6. Oude Bos, D.: EEG-based emotion recognition-The Influence of Visual and Auditory Stimuli. Capita Selecta (MSc course), 2006

    Google Scholar 

  7. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis. IEEE Trans. Affect. Comput. 1(2), 81–97 (2010). https://doi.org/10.1109/t-affc.2010.7. ISSN 1949-3045

    Article  Google Scholar 

  8. Verma, G.K., Tiwary, U.S.: Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102, 162–172 (2014). https://doi.org/10.1016/j.neuroimage.2013.11.007

    Article  Google Scholar 

  9. Shin, D., Shin, D., Shin, D.: Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents. Multimedia Tools Appl. 76(9), 11449–11470 (2016). https://doi.org/10.1007/s11042-016-4203-7. ISSN 1380-7501

    Article  Google Scholar 

  10. Zheng, W.-L., Zhu, J.-Y., Lu, B.-L.: Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. (2017). https://doi.org/10.1109/taffc.2017.2712143. ISSN 1949-3045

  11. Samara, A., Menezes, M.L.R., Galway, L.: Feature extraction for emotion recognition and modelling using neurophysiological data. In: 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS). Institute of Electrical and Electronics Engineers (IEEE), December 2016. https://doi.org/10.1109/iucc-css.2016.027. ISBN 978-1-5090-5566-1

  12. Li, X., Song, D., Zhang, P., Yu, G., Hou, Y., Hu, B.: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Institute of Electrical and Electronics Engineers (IEEE), December 2016. https://doi.org/10.1109/bibm.2016.7822545. ISBN 978-1-5090-1611-2

  13. Zhang, J., Chen, M., Hu, S., Cao, Y., Kozma, R.: PNN for EEG-based emotion recognition. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Institute of Electrical and Electronics Engineers (IEEE), October 2016. https://doi.org/10.1109/smc.2016.7844584. ISBN 978-1-5090-1897-0

  14. Garcia, H.F., Alvarez, M.A., Orozco, A.A.: Gaussian process dynamical models for multimodal affect recognition. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Institute of Electrical and Electronics Engineers (IEEE), August 2016. https://doi.org/10.1109/embc.2016.7590834. ISBN 978-1-4577-0220-4

  15. Liu, J., Meng, H., Nandi, A., Li, M.: Emotion detection from EEG recordings. In: 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 2173–2178 (2016). http://bura.brunel.ac.uk/handle/2438/13138

  16. González, N., Calot, E.P., Ierache, J.S.: A replication of two free text keystroke dynamics experiments under harsher conditions. In: 2016 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–6, September 2016. https://doi.org/10.1109/BIOSIG.2016.7736905

  17. Ekman, P., O’Sullivan, M.: The role of context in interpreting facial expression: comment on Russell and Fehr (1987). J. Exp. Psychol. Gen. 117(1), 86–88 (1988). https://doi.org/10.1037/0096-3445.117.1.86. ISSN 0096–445

    Article  Google Scholar 

  18. Ekman, P.: Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique. Psychol. Bull. 115(2), 268–287 (1994). https://doi.org/10.1037/0033-2909.115.2.268. ISSN 0033-2909

    Article  Google Scholar 

  19. Ekman, P., Friesen, W.V.: Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues. Malor Books (2003). https://books.google.com.ar/books?id=TukNoJDgMTUC. ISBN 978-1-883536-36-7

  20. Plutchik, R.: Emotions in the Practice of Psychotherapy: Clinical Implications of Affect Theories. American Psychological Association (2000). https://doi.org/10.1037/10366-000. ISBN 978-1-55798-694-8

    Book  Google Scholar 

  21. Grandjean, D., Sander, D., Scherer, K.R.: Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Conscious. Cogn. 17(2), 484–495 (2008)

    Article  Google Scholar 

  22. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980). https://doi.org/10.1037/h0077714. ISSN 0022-3514

    Article  Google Scholar 

  23. Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14(4), 261–292 (1996)

    Article  MathSciNet  Google Scholar 

  24. Scherer, K.R., Schorr, A., Johnstone, T.: Appraisal Processes in Emotion: Theory, Methods, Research. Series in Affective Science. Oxford University Press, Oxford (2001). ISBN 978-0-19-028470-1

    Google Scholar 

  25. Gunes, H., Schuller, B., Pantic, M., Cowie, R.: Emotion representation, analysis and synthesis in continuous space: a survey. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), pp. 827–834. IEEE, March 2011. https://doi.org/10.1109/FG.2011.5771357

  26. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991). http://view.ncbi.nlm.nih.gov/pubmed/1707798. ISSN 0013-4694

    Article  Google Scholar 

  27. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  28. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 17849–17854. National Academy of Sciences, December 2004. https://doi.org/10.1073/pnas.0403504101

    Article  Google Scholar 

  29. Yurci, E.: Emotion detection from EEG signals: correlating cerebral cortex activity with music evoked emotion. Universitat Pompeu Fabra, Barcelona (2014)

    Google Scholar 

  30. Harrison, T.: The Emotiv mind: investigating the accuracy of the Emotiv EPOC in identifying emotions and its use in an Intelligent Tutoring System (2013)

    Google Scholar 

  31. Lang, P.J.: Behavioral treatment and bio-behavioral assessment: computer applications. In: Sidowski, J.B., Johnson, J.H., Williams, T.A. (eds.) Technology in Mental Health Care Delivery Systems, pp. 119–137. Ablex, Norwood (1980). ISBN 978-0-89391-023-5

    Google Scholar 

  32. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical report A-8 (2008)

    Google Scholar 

  33. Jasper, H.H.: Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 10(2), 370–375 (1958). https://doi.org/10.1016/0013-4694(58)90053-1. ISSN 0013-4694

    Article  Google Scholar 

  34. Feldman, L.A.: Valence focus and arousal focus: individual differences in the structure of affective experience. J. Pers. Soc. Psychol. 69(1), 153 (1995)

    Article  Google Scholar 

  35. Calot, E.P., González, N., Ierache, J.S., Hasperué, W.: A convergence model for distance-based keystroke dynamics classification methods (technical report) (2019). http://lsia.fi.uba.ar/papers/calot19e.pdf

  36. Monaco, J.V.: SoK: keylogging side channels. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 211–228. IEEE, May 2018. https://doi.org/10.1109/SP.2018.00026. ISBN 978-1-5386-4353-2

  37. Banerjee, R., Feng, S., Kang, J.S., Choi, Y.: Keystroke patterns as prosody in digital writings: a case study with deceptive reviews and essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1469–1473. Association for Computational Linguistics, October 2014

    Google Scholar 

  38. Calot, E.P., Ierache, J.S.: Multimodal biometric recording architecture for the exploitation of applications in the context of affective computing. In: Proceedings del XXIII Congreso Argentino de Ciencias de la Computación (La Plata, 2017), no. 10529, pp. 1030–1039 (2017). http://hdl.handle.net/10915/63866. ISBN 978-950-34-1539-9

  39. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965). https://doi.org/10.1093/biomet/52.3-4.591

    Article  MathSciNet  MATH  Google Scholar 

  40. Goulden, C.H.: Methods of Statistical Analysis, Chap. 4, 2 edn., pp. 50–55. Wiley, New York (1956)

    Google Scholar 

  41. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945). https://doi.org/10.2307/3001968

    Article  Google Scholar 

  42. Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17(03) (2005). https://doi.org/10.1017/s0954579405050340

Download references

Acknowledgments

This paper acknowledges support from the University of Buenos Aires with the project under UBACyT 20020130200140BA and PDE-44-2019 placed in the Laboratorio de Sistemas de Información Avanzados, Engineering Faculty, University of Buenos Aires. The project recognises the collaboration from the ISIER (FICCTE-SECYT UM) assisting only in BCI application concerns, under the PID 01-001/12/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge S. Ierache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calot, E.P., Ierache, J.S., Hasperué, W. (2020). Robustness of Keystroke Dynamics Identification Algorithms Against Brain-Wave Variations Associated with Emotional Variations. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_15

Download citation

Publish with us

Policies and ethics