Abstract
This study aims to build a CNN based classifier for characterizing LIGO gravitational wave data for transient noise analysis. The databank was generated from LIGO’s open source archives and a model was created to flag commonly occurring erroneous noise waveforms. The model developed was able to categorize incoming noise with an accuracy of >99% and also gave insights into preprocessing techniques that can be performed for best performance. This study may be extended to various fields of applied science where data size is colossal and interpretation is usually tedious and often ambiguous.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
George, D., Shen, H., Huerta, E.: Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO (2018). arXiv preprint arXiv:1706.07446
Aasi, J., et al.: The LIGO Scientific Collaboration, Classical and Quantum Gravity 32 074001 (Preprint 1411.4547) (2015)
The LIGO Scientific Collaboration and The Virgo Collaboration 2016 ArXiv e-prints (Preprint 1602.03838) (2015)
Abbott, B.P., et al.: LIGO scientific collaboration and virgo collaboration. Phys. Rev. Lett. 116(6), 061102 (2016). http://link.aps.org/doi/10.1103/PhysRevLett.116.061102
Abbott, B.P., et al.: LIGO scientific collaboration and virgo collaboratio. Phys. Rev. Lett. 116(24), 241103 (2016). http://link.aps.org/doi/10.1103/PhysRevLett.116.241103
Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al.: Phys. Rev. Lett. 118(22), 221101 (2017). https://link.aps.org/doi/10.1103/PhysRevLett.118.221101
Unnikrishnan, C.S.: IndIGO and LIGO-India: scope and plans for gravitational wave research and precision metrology in India. Int. J. Mod. Phys. D 22(01), 1341010 (2013)
Vallisneri, M., et al.: The LIGO open science center. In: Proceedings of the 10th LISA Symposium, University of Florida, Gainesville, arxiv:1410.4839, 18–23 May (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 1, 1097–1105 (2012)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814. Haifa, Israel, 21–24 June (2010)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
LeCun, Y.A., Bottou, L., Orr, G.B., M¨uller, K.-R.: Efficient backprop. In: Montavon, G., Orr, G.B., M¨uller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn., pp. 9–48. Springer, Berlin Heidelberg (2012)
Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks, advances in neural information processing systems. In: 2015 Twenty Eight International Conference on Neural Information Processing Systems, pp. 2377–2385. Montreal, Canada (2015)
Guo, T., et al.: Simple convolutional neural network on image classification. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA) (2017). https://doi.org/10.1109/icbda.2017.8078730
Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 1234–1242. Barcelona, Spain (2011)
Liu, S.W., Huang, J.H., Sung, J.C., Lee, C.C.: Detection of cracks using neural networks and computational mechanics. Comput. Meth. Appl. Mech. Eng. 191(25–26), 2831–2845 (2002)
Arivazhagan, S., Shebiah, N., Nidhyanandhan, S., Ganesan, L.: Fruit recognition using color and texture features. J. Emerg. Trends Comput. Inf. Sci. 1(2), 90–94 (2010)
Cires¸an, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Twenty-Second International Joint Conference on Artificial Intelligence, pp. 1237–1242. AAAI Press (2011)
Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., M¨uller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn., pp. 421–36. Springer, Berlin Heidelberg (2012)
Bengio, Y., Goodfellow, I.J., Courville, A.: Deep Learning, An MIT Press book. http://www.deeplearningbook.org. Accessed July 2016
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
George, D., Huerta, E.: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778, 64–70 (2017). https://doi.org/10.1016/j.physletb.2017.12.053
The LIGO Scientific Collaboration and the Virgo Collaboration 2016 ArXiv e-prints (Preprint 1602.03844) (2016)
The LIGO Scientific Collaboration and Abbott B P 2016 ArXiv e-prints (Preprint 1602.03845) (2016)
George, D., Shen, H., Huerta, E.: Classification and unsupervised clustering of LIGO data with deep transfer learning. Phys. Rev. D 97(10), 101501 (2018). https://doi.org/10.1103/physrevd.97.101501
Acknowledgment
This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Goel, L., Mukherjee, J. (2020). Characterizing High Level LIGO Gravitational Wave Data Using Deep Learning. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_64
Download citation
DOI: https://doi.org/10.1007/978-3-030-29516-5_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29515-8
Online ISBN: 978-3-030-29516-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)