Skip to main content

Retweet Prediction Using Context-Aware Coupled Matrix-Tensor Factorization

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11775))

Abstract

Retweet behavior plays an important role in the process of information diffusion on social networks. Although many researches have been studied the problem of retweet prediction, these studies ignore the important characteristic of multiple contextual dimensions for user’s decision in the modeling process. To this end, we propose a novel multiple dimensions retweet prediction model based on context-aware coupled matrix-tensor factorization (RCMTF). This model first introduces a reference tensor based on the historical retweet behavior patterns to alleviate the problem of data sparsity, and then constructs three contextual factor matrices from user and message and influence dimensions on basis of network structure, message content and historical interactions to further improve the prediction accuracy. Finally, we collaboratively factorizes these contextual factors under matrix and tensor factorization models framework for predicting user’s retweet behaviors. Extensive experiments are conducted to demonstrate the effectiveness of the proposed method on two real-world datasets. The results show that our proposed model outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anandkumar, A., Ge, R., Hsu, D., Kakade, S.: A tensor spectral approach to learning mixed membership community models. In: COLT, pp. 867–881 (2013)

    Google Scholar 

  2. Can, E.F., Oktay, H., Manmatha, R.: Predicting retweet count using visual cues. In: CIKM, pp. 1481–1484 (2013)

    Google Scholar 

  3. Hidasi, B., Tikk, D.: General factorization framework for context-aware recommendations. Data Min. Knowl. Disc. 30(2), 342–371 (2016)

    Article  MathSciNet  Google Scholar 

  4. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: RecSys, pp. 79–86. ACM (2010)

    Google Scholar 

  5. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, pp. 1188–1196 (2014)

    Google Scholar 

  6. Lee, K., Mahmud, J., Chen, J., Zhou, M., Nichols, J.: Who will retweet this? detecting strangers from Twitter to retweet information. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 31 (2015)

    Google Scholar 

  7. Lee, R.K.-W., Hoang, T.-A., Lim, E.-P.: On analyzing user topic-specific platform preferences across multiple social media sites. In: WWW, pp. 1351–1359. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  8. Lei, T., Xin, Y., Zhang, Y., Barzilay, R., Jaakkola, T.: Low-rank tensors for scoring dependency structures. ACL 1, 1381–1391 (2014)

    Google Scholar 

  9. Liu, Y.-K., Anandkumar, A., Foster, D.P., Hsu, D., Kakade, S.M.: Two SVDs suffice: spectral decompositions for probabilistic topic modeling and latent Dirichlet allocation. In: NIPS (2012)

    Google Scholar 

  10. Luo, Z., Osborne, M., Tang, J., Wang, T.: Who will retweet me? finding retweeters in Twitter. In: SIGIR, pp. 869–872 (2013)

    Google Scholar 

  11. Metaxas, P.T., Mustafaraj, E., Wong, K., Zeng, L., O’Keefe, M., Finn, S.: What do retweets indicate? results from user survey and meta-review of research. In: ICWSM, pp. 658–661 (2015)

    Google Scholar 

  12. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816 (2011)

    Google Scholar 

  13. Peng, H.-K., Zhu, J., Piao, D., Yan, R., Zhang, Y.: Retweet modeling using conditional random fields. In: ICDM, pp. 336–343. IEEE (2011)

    Google Scholar 

  14. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000. IEEE (2010)

    Google Scholar 

  15. Rendle, S., Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: KDD, pp. 727–736. ACM (2009)

    Google Scholar 

  16. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: WSDM, pp. 81–90. ACM (2010)

    Google Scholar 

  17. Sahebi, S., Lin, Y.-R., Brusilovsky, P.: Tensor factorization for student modeling and performance prediction in unstructured domain. In: EDM, pp. 502–506. IEDMS (2016)

    Google Scholar 

  18. Schein, A., Paisley, J., Blei, D.M., Wallach, H.: Bayesian poisson tensor factorization for inferring multilateral relations from sparse dyadic event counts. In: KDD, pp. 1045–1054. ACM (2015)

    Google Scholar 

  19. Shi, J., Chen, G., Lai, K.K.: Factors dominating individuals’ retweeting decisions. In: CyberC, pp. 161–168. IEEE (2016)

    Google Scholar 

  20. Stephen, A.T.: The role of digital and social media marketing in consumer behavior. Curr. Opin. Psychol. 10, 17–21 (2016)

    Article  Google Scholar 

  21. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  22. Wang, C., Li, Q., Wang, L., Zeng, D.D.: Incorporating message embedding into co-factor matrix factorization for retweeting prediction. In: IJCNN, pp. 1265–1272. IEEE (2017)

    Google Scholar 

  23. Wang, M., Zuo, W., Wang, Y.: A multidimensional nonnegative matrix factorization model for retweeting behavior prediction. Math. Prob. Eng. 2015, 10 (2015)

    Google Scholar 

  24. Xiong, L., Chen, X., Huang, T.-K., Schneider, J., Carbonell, J.G.: Temporal collaborative filtering with Bayesian probabilistic tensor factorization. In: ICDM, pp. 211–222. SIAM (2010)

    Google Scholar 

  25. Yang, C., Liu, L., Jiao, Y., Chen, L., Niu, B.: Research on the factors affecting users’ reposts in microblog. In: ICSSSM, pp. 1–6. IEEE (2017)

    Google Scholar 

  26. Yang, Z., et al.: Understanding retweeting behaviors in social networks. In: CIKM, pp. 1633–1636 (2010)

    Google Scholar 

  27. Zhang, J., Tang, J., Li, J., Liu, Y., Xing, C.: Who influenced you? predicting retweet via social influence locality. ACM Trans. Knowl. Disc. Data (TKDD) 9(3), 25 (2015)

    Google Scholar 

  28. Zhang, Q., Gong, Y., Guo, Y., Huang, X.: Retweet behavior prediction using hierarchical Dirichlet process. In: AAAI, pp. 403–409 (2015)

    Google Scholar 

  29. Zhang, Q., Gong, Y., Wu, J., Huang, H., Huang, X.: Retweet prediction with attention-based deep neural network. In: CIKM, pp. 75–84. ACM (2016)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Natural Science Foundation of China (No. 61702508, No. 61802404). This work is also partially supported by Key Laboratory of Network Assessment Technology, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, B., Yi, F., Wu, J., Lu, Z. (2019). Retweet Prediction Using Context-Aware Coupled Matrix-Tensor Factorization. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics