Abstract
In reality, many complex network systems can be abstracted to community detection in multi-layer networks, such as social relationships networks across multiple platforms. The composite community structure in multi-layer networks should be able to comprehensively reflect and describe the community structure of all layers. At present, most community detection algorithms mainly focus on the single layer networks, while those in multi-layer networks are still at the initial stage. In order to detect community structures in multi-layer networks, a new multi-objective evolution model is proposed in this paper. This model introduces the concept of modularity in different decision domains and the method of local search to iteratively optimize each layer of a network. Taking NSGA-II as the benchmark algorithm, the proposed multi-objective evolution model is applied to optimize the genetic operation and optimal solution selection strategies. The new algorithm is denoted as MulNSGA-II. The MulNSGA-II algorithm adopts the locus-based representation strategy, and integrates the genetic operation and local search. In addition, different optimal solution selection strategies are used to determine the optimal composite community structure. Experiments are carried out in real and synthetic networks, and results demonstrate the performance and effectiveness of the proposed model in multi-layer networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gao, C., Liu, J.M.: Network-based modeling for characterizing human collective behaviors during extreme events. IEEE Trans. Sys. Man Cybern. Syst. 46(1), 171–183 (2017)
Chiti, F., Dobson, C.M.: Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017)
Strano, E., Viana, M.P., Sorichetta, A.: Mapping road network communities for guiding disease surveillance and control strategies. Sci. Rep-UK 8(1), 4744 (2018)
Li, Z.T., Liu, J., Wu, K.: A multiobjective evolutionary algorithm based on structural and attribute similarities for community detection in attributed networks. IEEE Trans. Cybern. 48(7), 1963–1976 (2017)
Liu, C.L., Liu, J., Jiang, Z.Z.: A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE Trans. Cybern. 44(12), 2274–2287 (2014)
Gao, C., Liang, M.X., Li, X.H.: Network community detection based on the Physarum-inspired computational framework. IEEE/ACM Trans. Comput. Bi. 15(6), 1916–1928 (2018)
Bravobenitez, B., Alexandrovakabadjova, B., Martinezjaramillo, S.: Centrality measurement of the mexican large Value payments system from the perspective of multiplex networks. Comput. Econ. 47(1), 19–47 (2016)
Yao, Y., Zhang, R., Fan, Y.: Link prediction via layer relevance of multiplex networks. Int. J. Mod. Phys. C 28(08), 1750101 (2017)
Ma, L.J., Gong, M.G., Yan, J.N., Liu, W.F., Wang, S.F.: Detecting composite communities in multiplex networks: a multilevel memetic algorithm. Swarm Evol. Comput. 39, 177–191 (2018)
Taylor, D., Shai, S., Stanley, N., Mucha, P.J.: Enhanced detectability of community structure in multilayer networks through layer aggregation. Phys. Rev. Lett. 116(22), 228301 (2016)
Xuan, Q., Ma, X.D., Fu, C.B., Dong, H., Zhang, G.J.: Heterogeneous multidimensional scaling for complex networks. Int. J. Mod. Phy. C. 26(02), 1550023 (2015)
Dai, C.Y., Chen, L., Li, B., Li, Y.: Link prediction in multi-relational networks based on relational similarity. Inform. Sci. 394, 198–216 (2017)
Pitsik, E., et al.: Inter-layer competition in adaptive multiplex network. New J. Phy. 20(7), 075004 (2018)
Boutemine, O., Bouguessa, M.: Mining community structures in multidimensional networks. ACM Trans. Knowl. Discov. Data 11(4), 51 (2017)
Li, Z.T., Liu, J., Wu, K.: A multiobjective evolutionary algorithm based on structural and attribute similarities for community detection in attributed networks. IEEE Trans. Cybern. 48(7), 1963–1976 (2017)
Wang, Z., Wang, L., Szolnoki, A., Perc, M.: Evolutionary games on multilayer networks: A colloquium. Eur. Phys. J. B 88(5), 124 (2015)
Pizzuti, C.: Evolutionary computation for community detection in networks: A review. IEEE Trans. Evol. Comput. 22(3), 464–483 (2018)
Chen, X.J., Liu, Y.X., Li, X.H., Wang, Z., Wang, S.X., Gao, C.: A new evolutionary multiobjective model for traveling salesman problem. IEEE Access. 7, 66964–66979 (2019). https://doi.org/10.1109/ACCESS.2019.2917838. https://ieeexplore.ieee.org/abstract/document/8718296
Purshouse, R.C., Deb, K., Mansor, M.M., Mostaghim, S., Wang, R.: A review of hybrid evolutionary multiple criteria decision making methods. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1147–1154 (2014)
Bródka, P.: A method for group extraction and analysis in multi-layered social networks. Ph.D. disertation, Wroclaw, Poland, arXiv.org:1302.1369 (2012). https://www.ii.pwr.edu.pl/~brodka/index-en.html
Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. 69(2), 026113 (2004)
Amelio, A., Pizzuti, C.: Community detection in multidimensional networks. In: 2014 IEEE Proceedings of the 26th International Conference on Tools with Artificial Intelligence, pp. 352–359 (2014)
Pizzuti, C., Socievole, A.: Many-objective optimization for community detection in multi-layer networks. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 411–418 (2017)
Liu, W.F., Wang, S.F., Gong, M.: An improved multiobjective evolutionary approach for community detection in multilayer networks. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 443–449 (2017)
Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Sci. Rep. 2, 336 (2012). https://www.nature.com/articles/srep00336
Acknowledgment
This work is supported by National Natural Science Foundation of China (Nos. 61602391, 61402379), Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0274), and in part of Southwest University Training Programs of Innovation and Entrepreneurship for Undergraduates (No. X201910635045).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, X., Li, X., Deng, Y., Chen, S., Gao, C. (2019). A New Multi-objective Evolution Model for Community Detection in Multi-layer Networks. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-29551-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29550-9
Online ISBN: 978-3-030-29551-6
eBook Packages: Computer ScienceComputer Science (R0)