Skip to main content

Named Entity Recognition in Traditional Chinese Medicine Clinical Cases Combining BiLSTM-CRF with Knowledge Graph

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11775))

Abstract

Named entity recognition in Traditional Chinese Medicine (TCM) clinical cases is a fundamental and crucial task for follow-up work. In recent years, deep learning approaches have achieved remarkable results in named entity recognition and other natural language processing tasks. However, these methods cannot effectively solve the problem of low recognition rate of rare words, which is common in TCM field. In this paper, we propose TCMKG-LSTM-CRF model that utilizes knowledge graph information to strength the learning ability and recognize rare words. This model introduces knowledge attention vector model to implement attention mechanism between hidden vector of neural networks and knowledge graph candidate vectors and consider influence from previous word. The experiment results prove the effectiveness of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://zcy.ckcest.cn/MedicalRecord/index.

References

  1. Nestler, G.: Traditional chinese medicine. Med. Clin. North Am. 86(1), 63–73 (2002)

    Article  Google Scholar 

  2. Rau, L.F.: Extracting company names from text. In: Seventh IEEE Conference on Artificial Intelligence Applications, 1991 Proceedings, vol. 1, pp. 29–32. IEEE (1991)

    Google Scholar 

  3. Coates-Stephens, S.: The analysis and acquisition of proper names for the understanding of free text. Comput. Humanit. 26(5–6), 441–456 (1992)

    Article  Google Scholar 

  4. Friedman, C., Alderson, P.O., Austin, J.H.M., Cimino, J.J., Johnson, S.B.: A general natural-language text processor for clinical radiology. J. Am. Med. Inform. Assoc. 1(2), 161–174 (1994)

    Article  Google Scholar 

  5. Fukuda, K., Tamura, A., Tsunoda, T., Takagi, T.: Toward information extraction: identifying protein names from biological papers. Pac. Symp. Biocomput. 707–718 (1998)

    Google Scholar 

  6. Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: a high-performance learning name-finder. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, pp. 194–201. Association for Computational Linguistics (1997)

    Google Scholar 

  7. Sekine, S.: Description of the Japanese NE system used for MET-2. In: Seventh Message Understanding Conference (MUC-7): Proceedings of a Conference Held in Fairfax, Virginia, April 29–May 1 1998

    Google Scholar 

  8. Borthwick, A., Sterling, J., Agichtein, E., Grishman, R.: Description of the MENE named entity system as used in MUC-7. In: Proceedings of the Seventh Message Understanding Conference (MUC-7), Fairfax, Virginia, April 29–May 1 1998

    Google Scholar 

  9. Asahara, M., Matsumoto, Y.: Japanese named entity extraction with redundant morphological analysis. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, pp. 8–15. Association for Computational Linguistics (2003)

    Google Scholar 

  10. McCallum, A., Li, W.: Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4, pp. 188–191. Association for Computational Linguistics (2003)

    Google Scholar 

  11. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. In: IEEE International Conference on Neural Networks 1996, vol. 1, pp. 347–352. IEEE (1996)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  14. Mikolov, T., Karafiát, M., Burget, L., Černocký, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, vol. 2, p. 3 (2010)

    Google Scholar 

  15. Mikolov, T., Kombrink, S., Burget, L., Černocký, J., Khudanpur, S.: Extensions of recurrent neural network language model. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5528–5531. IEEE (2011)

    Google Scholar 

  16. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  17. Liu, S., Yang, N., Li, M., Zhou, M.: A recursive recurrent neural network for statistical machine translation (2014)

    Google Scholar 

  18. Auli, M., Galley, M., Quirk, C., Zweig, G.: Joint language and translation modeling with recurrent neural networks. In: EMNLP, vol. 3, pp. 1044–1054 (2013)

    Google Scholar 

  19. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Heidelberg (2005). https://doi.org/10.1007/11550907_126

    Chapter  Google Scholar 

  20. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  21. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  22. Chalapathy, R., Borzeshi, E.Z., Piccardi, M.: Bidirectional LSTM-CRF for clinical concept extraction. arXiv preprint arXiv:1611.08373 (2016)

  23. Yang, B., Mitchell, T.: Leveraging knowledge bases in LSTMs for improving machine reading. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1436–1446 (2017)

    Google Scholar 

  24. Wang, Y., Liu, Y., Yu, Z., Chen, L., Jiang, Y.: A preliminary work on symptom name recognition from free-text clinical records of traditional chinese medicine using conditional random fields and reasonable features. In: Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, pp. 223–230. Association for Computational Linguistics (2012)

    Google Scholar 

  25. Wang, Y., et al.: Supervised methods for symptom name recognition in free-text clinical records of traditional chinese medicine: an empirical study. J. Biomed. Inform. 47, 91–104 (2014)

    Article  Google Scholar 

  26. Wang, Q., Xia, Y., Zhou, Y., Ruan, T., Gao, D., He, P.: Incorporating dictionaries into deep neural networks for the chinese clinical named entity recognition. arXiv preprint arXiv:1804.05017 (2018)

  27. Wang, Y., Ananiadou, S., Tsujii, J.: Improve Chinese clinical named entity recognition performance by using the graphical and phonetic feature. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1582–1586. IEEE (2018)

    Google Scholar 

  28. Dettmers, T., Minervini, P., Stenetorp, P., et al.: Convolutional 2D knowledge graph embeddings. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  29. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., et al.: A novel embedding model for knowledge base completion based on convolutional neural network. arXiv preprint arXiv:1712.02121 (2017)

  30. Dong, J., Wang, Y.: zhongguoxiandaimingzhongyiyianjingcui (in Chinese) (2010)

    Google Scholar 

  31. Lu, Z., Yang, S., Wang, X., et al.: erxumingyileian (in Chinese), fumingyileian, xumingyileian

    Google Scholar 

  32. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the China Knowledge Centre for Engineering Sciences and Technology (CKCEST) and the Natural Science Foundation of Zhejiang Province, China (No. LY17H100003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, Z., Zhang, Y., Kuang, H., Yao, L., Zhang, W., Pan, Y. (2019). Named Entity Recognition in Traditional Chinese Medicine Clinical Cases Combining BiLSTM-CRF with Knowledge Graph. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics