Skip to main content

AutoSimP: An Approach for Predicting Proteins’ Structural Similarities Using an Ensemble of Deep Autoencoders

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11776))

Abstract

This paper investigates the problem of supervisedly classifying proteins according to their structural similarity, based on the information enclosed within their conformational transitions. We are proposing AutoSimP approach consisting of an ensemble of autoencoders for predicting the similarity class of a certain protein, considering the similarity predicted for its conformational transitions. Experiments performed on real protein data reveal the effectiveness of our proposal compared with similar existing approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. The UniProt Consortium: The universal protein resource (UniProt). Nucleic Acids Res. 35(Database-Issue), 193–197 (2007). https://doi.org/10.1093/nar/gkl929

  2. Albert, S., Teletin, M., Czibula, G.: Analysing protein data using unsupervised learning techniques. Int. J. Innov. Comput. Inf. Control 14, 861–880 (2018)

    Google Scholar 

  3. Ambrogelly, A., Palioura, S., Soll, D.: Natural expansion of the genetic code. Nat. Chem. Biol. 3, 29–35 (2007)

    Article  Google Scholar 

  4. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  5. Dayhoff, M.O., Schwartz, R.M.: A model of evolutionary change in proteins (Chap. 22). In: Atlas of Protein Sequence and Structure (1978)

    Google Scholar 

  6. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Gu, Q., Zhu, L., Cai, Z.: Evaluation measures of the classification performance of imbalanced data sets. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. CCIS, vol. 51, pp. 461–471. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04962-0_53

    Chapter  Google Scholar 

  9. Hubbard, T.J.P., Ailey, B., Brenner, S.E., Murzin, A.G., Chothia, C.: SCOP: a structural classification of proteins database. Nucleic Acids Res. 27(1), 254–256 (1999)

    Article  Google Scholar 

  10. Jo, T., Hou, J., Eickholt, J., Cheng, J.: Improving protein fold recognition by deep learning networks. Sci. Rep. 5, 17573 (2015)

    Article  Google Scholar 

  11. Lesk, A.: Introduction to Protein Science. Oxford University Press, Oxford (2004)

    Google Scholar 

  12. Mansoori, E.G., Zolghadri, M.J., Katebi, S.D.: Protein superfamily classification using fuzzy rule-based classifier. IEEE Trans. NanoBiosci. 8(1), 92–99 (2009)

    Article  Google Scholar 

  13. Meyer, T., et al.: MoDEL: a database of atomistic molecular dynamics trajectories. Structure 18(11), 1399–1409 (2010)

    Article  Google Scholar 

  14. Pandini, A., Fornili, A., Kleinjung, J.: Structural alphabets derived from attractors in conformational space. BMC Bioinform. 11(97), 1–18 (2010)

    Google Scholar 

  15. Wei, L., Zou, Q.: Recent progress in machine learning-based methods for protein fold recognition. Int. J. Mol. Sci. 17(12), 2118 (2016). PMID: 27999256

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank lecturer Alessandro Pandini from Brunel University, London for providing the protein data sets used in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Czibula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teletin, M., Czibula, G., Codre, C. (2019). AutoSimP: An Approach for Predicting Proteins’ Structural Similarities Using an Ensemble of Deep Autoencoders. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11776. Springer, Cham. https://doi.org/10.1007/978-3-030-29563-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29563-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29562-2

  • Online ISBN: 978-3-030-29563-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics