Abstract
We deal with the lumpability approach to cope with the state space explosion problem inherent to the computation of the performance indices of large stochastic models using a state aggregation technique. The lumpability method applies to Markov chains exhibiting some structural regularity and allows one to efficiently compute the exact values of the performance indices when the model is actually lumpable. The notion of quasi-lumpability is based on the idea that a Markov chain can be altered by relatively small perturbations of the transition rates in such a way that the new resulting Markov chain is lumpable. In this case only upper and lower bounds on the performance indices can be derived. In this paper we introduce a novel notion of quasi lumpability, named proportional lumpability, which extends the original definition of lumpability but, differently than the general definition of quasi lumpability, it allows one to derive exact performance indices for the original process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alzetta, G., Marin, A., Piazza, C., Rossi, S.: Lumping-based equivalences in markovian automata: algorithms and applications to product-form analyses. Inf. Comput. 260, 99–125 (2018). https://doi.org/10.1016/j.ic.2018.04.002
Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G.: From partially to fully lumped Markov chains in stochastic well formed Petri nets. In: Proceedings of Valuetools 2009 Conference, p. 44. ACM (2009). https://doi.org/10.4108/ICST.VALUETOOLS2009.7733
Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G., Haddad, S.: Lumping partially symmetrical stochastic models. Perform. Eval. 68(1), 21–44 (2011). https://doi.org/10.1016/j.peva.2010.09.002
Baarir, S., Dutheillet, C., Haddad, S., Iliè, J.M.: On the use of exact lumping in partially symmetrical Well-formed Petri Nets. In: Proceedings of International Conference on Quantitative Evaluation of Systems (QEST), Torino, Italy, pp. 23–32. IEEE Computer Society (2005). https://doi.org/10.1109/QEST.2005.26
Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005). https://doi.org/10.1016/j.ic.2005.03.001
Balsamo, S., Marin, A.: Queueing networks. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 34–82. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_2
Bernardo, M.: Weak Markovian bisimulation congruences and exact CTMC-level aggregations for concurrent processes. In: Proceedings of the 10th Workshop on Quantitative Aspects of Programming Languages and Systems (QALP 2012), pp. 122–136. EPTCS (2012). https://doi.org/10.4204/EPTCS.85.9
Bernardo, M.: Weak Markovian bisimulation congruences and exact CTMC-level aggregations for sequential processes. In: Bruni, R., Sassone, V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 89–103. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30065-3_6
Bravetti, M.: Revisiting interactive Markov chains. Electr. Notes Theor. Comput. Sci. 68(5), 65–84 (2003). https://doi.org/10.1016/S1571-0661(04)80520-6
Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994). https://doi.org/10.1017/S0021900200107338
Daly, D., Buchholz, P., Sanders, W.: Bound-preserving composition for Markov reward models. In: Third International Conference on the Quantitative Evaluation of Systems (QEST 2006), pp. 243–252 (2006). https://doi.org/10.1109/QEST.2006.8
Franceschinis, G., Muntz, R.R.: Bounds for quasi-lumpable Markov chains. Perform. Eval. 20(1–3), 223–243 (1994). https://doi.org/10.1016/0166-5316(94)90015-9
Franceschinis, G., Muntz, R.R.: Computing bounds for the performance indices of quasi-lumpable stochastic well-formed nets. IEEE Trans. Softw. Eng. 20(7), 516–525 (1994). https://doi.org/10.1109/32.297940
Hermanns, H.: Interactive Markov Chains. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45804-2
Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Press, Cambridge (1996)
Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual lumpability. In: Proceedings of Valuetools 2013 Conference, pp. 194–203. ACM Press (2013). https://doi.org/10.4108/icst.valuetools.2013.254408
Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)
Marin, A., Rossi, S.: Autoreversibility: exploiting symmetries in Markov chains. In: Proceedings of IEEE MASCOTS, San Francisco, CA, USA, pp. 151–160 (2013). https://doi.org/10.1109/MASCOTS.2013.23
Marin, A., Rossi, S.: On the relations between Markov chain lumpability andreversibility. Acta Informatica 54(5), 447–485 (2017). https://doi.org/10.1007/s00236-016-0266-1
Milios, D., Gilmore, S.: Component aggregation for PEPA models: an approach based on approximate strong equivalence. Perform. Eval. 94, 43–71 (2015). https://doi.org/10.1016/j.peva.2015.09.004
Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Trans. Comput. 31(9), 913–917 (1982). https://doi.org/10.1109/TC.1982.1676110
Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Perform. Eval. Rev. 13(2), 147–154 (1985). https://doi.org/10.1145/317795.317819
Smith, M.: Compositional abstractions for long-run properties of stochastic systems. In: Eighth International Conference on Quantitative Evaluation of Systems, QEST 2011, pp. 223–232 (2011). https://doi.org/10.1109/QEST.2011.37
Sumita, U., Reiders, M.: Lumpability and time-reversibility in the aggregation-disaggregation method for large Markov chains. Commun. Stat. Stoch. Model. 5, 63–81 (1989). https://doi.org/10.1080/15326348908807099
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Marin, A., Piazza, C., Rossi, S. (2019). Proportional Lumpability. In: André, É., Stoelinga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2019. Lecture Notes in Computer Science(), vol 11750. Springer, Cham. https://doi.org/10.1007/978-3-030-29662-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-29662-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29661-2
Online ISBN: 978-3-030-29662-9
eBook Packages: Computer ScienceComputer Science (R0)