Skip to main content

Mixed-Time Signal Temporal Logic

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11750))

Abstract

We present Mixed-time Signal Temporal Logic (\(\textsc {STL-mx}\)), a specification formalism which extends STL by capturing the discrete/ continuous time duality found in many cyber-physical systems (CPS), as well as mixed-signal electronic designs. In \(\textsc {STL-mx}\), properties of components with continuous dynamics are expressed in STL, while specifications of components with discrete dynamics are written in LTL. To combine the two layers, we evaluate formulas on two traces, discrete- and continuous-time, and introduce two interface operators that map signals, properties and their satisfaction signals across the two time domains. We show that STL-mx has the expressive power of STL supplemented with an implicit T-periodic clock signal. We develop and implement an algorithm for monitoring STL-mx formulas and illustrate the approach using a mixed-signal example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is a simplification of the AMS setting: not all interaction between analog and digital components goes through A/D and D/A conversions.

  2. 2.

    We use the same symbols for Boolean and temporal connectives in both continuous-time and discrete-time formulas. The distinction between the two layers is defined by the context. Note that each valid formula is classified unambiguously as discrete-time or continuous-time.

References

  1. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_21

    Chapter  Google Scholar 

  2. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakhirkin, A., Ferrère, T., Henzinger, T.A., Nickovic, D.: The first-order logic of signals: keynote. In: Proceedings of the International Conference on Embedded Software, EMSOFT 2018, Torino, Italy, September 30 - October 5, 2018, p. 1 (2018). https://doi.org/10.1109/EMSOFT.2018.8537203

  4. Bartocci, Ezio, et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, Ezio, Falcone, Yliès (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  5. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for simulating and prototyping heterogenous systems. Int. J. Comput. Simul. 4(2), 155–182 (1994)

    Google Scholar 

  6. Combemale, B., et al. (eds.): Joint Proceedings of the First International Workshop On the Globalization of Modeling Languages (GEMOC 2013) and the First International Workshop: Towards the Model Driven Organization (AMINO 2013) Co-located with the 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013), Miami, USA, September 29 - October 04, 2013, CEUR Workshop Proceedings, vol. 1102. CEUR-WS.org (2013). http://ceur-ws.org/Vol-1102

  7. Graphics Corporation, M.: Questa ADMS. http://www.mentor.com/products/fv/advance_ms/

  8. Dluhos, P., Brim, L., Safránek, D.: On expressing and monitoring oscillatory dynamics. In: HSB, pp. 73–87 (2012). https://doi.org/10.4204/EPTCS.92.6

    Article  Google Scholar 

  9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  10. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On temporal logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 92–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_9

    Chapter  MATH  Google Scholar 

  11. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The definition of a temporal clock operator. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_67

    Chapter  Google Scholar 

  12. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11940197_12

    Chapter  Google Scholar 

  13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009). https://doi.org/10.1016/j.tcs.2009.06.021

    Article  MathSciNet  MATH  Google Scholar 

  14. ISO 26262:2011: Road Vehicles - Functional Safety. ISO, Geneva, Switzerland

    Google Scholar 

  15. Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative monitoring of STL with edit distance. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 201–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_13

    Chapter  Google Scholar 

  16. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor. Comput. Sci. 331(2–3), 397–428 (2005). https://doi.org/10.1016/j.tcs.2004.09.023

    Article  MathSciNet  MATH  Google Scholar 

  17. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

    Article  Google Scholar 

  18. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  19. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits. STTT 15(3), 247–268 (2013). https://doi.org/10.1007/s10009-012-0247-9

    Article  Google Scholar 

  20. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340_20

    Chapter  MATH  Google Scholar 

  21. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78127-1_26

    Chapter  MATH  Google Scholar 

  22. Manna, Z., Pnueli, A.: Temporal Logic. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7_3

    Book  MATH  Google Scholar 

  23. Michel, M.: Computation of temporal operators. Logique et Analyse 110–111, 137–152 (1985)

    MathSciNet  MATH  Google Scholar 

  24. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0_11

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Austrian Science Fund (FWF) under grants 27 S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), and by the Productive 4.0 project (ECSEL 737459). The ECSEL Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France, Netherlands, United Kingdom, Slovakia, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Ničković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrère, T., Maler, O., Ničković, D. (2019). Mixed-Time Signal Temporal Logic. In: André, É., Stoelinga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2019. Lecture Notes in Computer Science(), vol 11750. Springer, Cham. https://doi.org/10.1007/978-3-030-29662-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29662-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29661-2

  • Online ISBN: 978-3-030-29662-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics