Abstract
Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between trajectories, producing an overapproximation that is time independent. However, the existing approach for PBT is not efficient due to the application of interval methods for enclosure-box computation, and it can only deal with continuous dynamical systems without uncertainty. In this paper, we extend the approach with the ability to handle both continuous and hybrid dynamical systems with uncertainty that can reside in parameters and/or noise. We also improve the efficiency of the method significantly, by avoiding the use of interval-based methods for the enclosure-box computation without loosing soundness. We have developed a C++ prototype implementing the proposed approach and we evaluate it on several benchmarks. The experiments show that our approach is more efficient and precise than other methods in the literature.
This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23, S11405-N23 (RiSE/SHiNE), ADynNet (P28182), and Z211-N23 (Wittgenstein Award) and the Deutsche Forschungsgemeinschaft project 389792660-TRR 248.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016. In: Proceedings of ARCH. EPiC Series in Computing, vol. 43, pp. 91–105. EasyChair (2017)
Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inform. 43(7), 451–476 (2007)
Ben Sassi, M.A., Sankaranarayanan, S., Chen, X., Ábrahám, E.: Linear relaxations of polynomial positivity for polynomial lyapunovfunction synthesis. IMA J. Math. Control. Inf. 33(3), 723–756 (2015)
Berz, M., Makino, K.: Verified integration of odes and flows using differential algebraic methods on high-order taylor models. Reliab. Comput. 4(4), 361–369 (1998)
Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.: Abstraction-based parameter synthesis for multiaffine systems. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 19–35. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26287-1_2
Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18
Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on solving nonlinear integer arithmetic with incremental linearization. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 383–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_23
Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization for satisfiability and verification modulo nonlinear arithmetic and transcendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)
Cyranka, J., Islam, M.A., Byrne, G., Jones, P., Smolka, S.A., Grosu, R.: Lagrangian reachabililty. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 379–400. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_19
Cyranka, J., Islam, Md.A., Smolka, S.A., Gao, S., Grosu, R.: Tight continuous-time reachtubes for lagrangian reachability. In: Proceedings of CDC 2018: 57th IEEE Conference on Decision and Control. IEEE (2018, to appear)
Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5
Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3–4), 209–236 (2007)
Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verification of hybrid systems using iterative refinement. In: Proceedings of SRC TECHCON 2005, Portland, USA, 24–26 October 2005
Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30
Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using support functions. Proc. IFAC World Congr. 41(2), 8966–8971 (2008)
Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_31
Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_18
Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal verification of analog and mixed-signal designs. In: TECHCON (2003)
Gurung, A., Ray, R., Bartocci, E., Bogomolov, S., Grosu, R.: Parallel reachability analysis of hybrid systems in xspeed. Int. J. Softw. Tools Technol. Transf., 1–23 (2018, to appear)
Hartong, W., Hedrich, L., Barke, E.: Model checking algorithms for analog verification. In: Proceedings of the 39th annual Design Automation Conference, pp. 542–547. ACM (2002)
Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)
Jiang, Y., Song, H., Wang, R., Gu, M., Sun, J., Sha, L.: Data-centered runtime verification of wireless medical cyber-physical system. IEEE Trans. Ind. Inform. 13(4), 1900–1909 (2017)
Jiang, Y., Wang, M., Liu, H., Hosseini, M., Sun, J.: Dependable integrated clinical system architecture with runtime verification. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 951–956, November 2017
Kong, H., Bartocci, E., Henzinger, T.A.: Reachable set over-approximation for nonlinear systems using piecewise barrier tubes. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 449–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_24
Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verification of nonlinear hybrid systems based on invariant clusters. In: Proceedings of HSCC 2017: the 20th International Conference on Hybrid Systems: Computation and Control, pp. 163–172. ACM (2017)
Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based barrier certificate generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_17
Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \({\delta }\)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15
Krilavicius, T.: Hybrid techniques for hybrid systems. Ph.D. thesis, University of Twente, Enschede, Netherlands (2006)
Lasserre, J.B.: Polynomial programming: LP-relaxations also converge. SIAM J. Optim. 15(2), 383–393 (2005)
Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: Proceedings of EMSOFT 2011: the 11th International Conference on Embedded Software, pp. 97–106. ACM (2011)
Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1_23
Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: Proceedings of SCAN 2006: the 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, pp. 4–4. IEEE (2006)
Prabhakar, P., García Soto, M.: Hybridization for stability analysis of switched linear systems. In: Proceedings of HSCC 2016: of the 19th International Conference on Hybrid Systems: Computation and Control, pp. 71–80. ACM (2016)
Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_32
Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)
Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed: accelerating reachability analysis on multi-core processors. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26287-1_1
Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 752–769. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_48
Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: Proceedings of HSCC 2010: the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 221–230. ACM (2010)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_36
Sankaranarayanan, S., Chen, X., et al.: Lyapunov function synthesis using handelman representations. IFAC Proc. Vol. 46(23), 576–581 (2013)
Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of state set representations for hybrid systems reachability analysis. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_20
Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant generation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_13
Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Mathematische Annalen 207(2), 87–97 (1974)
Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In: FSTTCS, vol. 4, pp. 383–394 (2009)
Yang, Z., Huang, C., Chen, X., Lin, W., Liu, Z.: A linear programming relaxation based approach for generating barrier certificates of hybrid systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 721–738. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_44
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kong, H., Bartocci, E., Jiang, Y., Henzinger, T.A. (2019). Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty. In: André, É., Stoelinga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2019. Lecture Notes in Computer Science(), vol 11750. Springer, Cham. https://doi.org/10.1007/978-3-030-29662-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-29662-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29661-2
Online ISBN: 978-3-030-29662-9
eBook Packages: Computer ScienceComputer Science (R0)