Skip to main content

A Probabilistic Graphical Model-Based Approach for the Label Ranking Problem

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2019)

Abstract

The goal of the Label Ranking (LR) Problem is to learn preference models that predict the preferred ranking of class labels for a given unlabelled instance. Different well-known machine learning algorithms have been adapted to deal with the LR problem. In particular, fine-tuned instance-based algorithms have exhibited a remarkable performance, specially when the model is trained with complete rankings, while model-based algorithms (e.g. decision trees) have been proved to be more robust when some data is missing, that is, the model is trained with incomplete rankings.

Probabilistic Graphical Models (PGMs, e.g. Bayesian networks) have not been considered to deal with this problem because of the difficulty to model permutations in that framework. In this paper, we propose a Hidden Naive Bayes classifier (HNB) to cope with the LR problem. By introducing the hidden variable we can design a hybrid Bayesian network in which several types of distributions can be combined, in particular, the Mallows distribution, which is a well-known distribution to deal with permutations. The experimental evaluation shows that the HNB classifier is competitive in accuracy when compared with Label Ranking (decision) Trees, being, moreover, considerably faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aledo, J., Gámez, J., Molina, D.: Tackling the supervised label ranking problem by bagging weak learners. Inf. Fusion 35, 38–50 (2017)

    Article  Google Scholar 

  2. Arias, J., Cózar, J.: ExReport: fast, reliable and elegant reproducible research (2015). http://exreport.jarias.es/

  3. Borda, J.: Memoire sur les elections au scrutin. Histoire de l’Academie Royal des Sciences (1770)

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  6. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. Wadsworth Inc., Wadsworth (1984)

    MATH  Google Scholar 

  7. Charte, D., Charte, F., García, S., Herrera, F.: A snapshot on nonstandard supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations. Prog. Artif. Intell. 8(1), 1–14 (2019)

    Article  Google Scholar 

  8. Cheng, W., Dembczynski, K., Hüllermeier, E.: Label ranking methods based on the Plackett-Luce model. In: Proceedings of the 27th International Conference on Machine Learning, pp. 215–222 (2010)

    Google Scholar 

  9. Cheng, W., Hühn, J., Hüllermeier, E.: Decision tree and instance-based learning for label ranking. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 161–168. ACM (2009)

    Google Scholar 

  10. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967)

    Article  Google Scholar 

  11. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Fernández, A., Gámez, J.A., Rumí, R., Salmerón, A.: Data clustering using hidden variables in hybrid Bayesian networks. Prog. Artif. Intell. 2, 141–152 (2014)

    Article  Google Scholar 

  13. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11, 86–92 (1940)

    Article  MathSciNet  Google Scholar 

  14. Garcša, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

  15. Gurrieri, M., Fortemps, P., Siebert, X.: Alternative decomposition techniques for label ranking. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 443, pp. 464–474. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08855-6_47

    Chapter  Google Scholar 

  16. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classification and ranking. In: Proceedings of the 15th International Conference on Neural Information Processing Systems, pp. 785–792 (2002)

    Google Scholar 

  17. Hernández, J., Inza, I., Lozano, J.A.: Weak supervision and other non-standard classification problems: a taxonomy. Pattern Recogn. Lett. 69, 49–55 (2016)

    Article  Google Scholar 

  18. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172, 1897–1916 (2008)

    Article  MathSciNet  Google Scholar 

  20. Irurozk, E., Calvo, B., Lozano, J.A.: PerMallows: an R package for mallows and generalized mallows models. J. Stat. Softw. 71(12), 1–30 (2016)

    Google Scholar 

  21. Kemeny, J., Snell, J.: Mathematical Models in the Social Sciences. MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  22. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)

    Google Scholar 

  23. Lowd, D., Domingos, P.: Naive Bayes models for probability estimation. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 529–536. ACM (2005)

    Google Scholar 

  24. Mallows, C.L.: Non-null ranking models. Biometrika 44, 114–130 (1957)

    Article  MathSciNet  Google Scholar 

  25. Ribeiro, G., Duivesteijn, W., Soares, C., Knobbe, A.: Multilayer perceptron for label ranking. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7553, pp. 25–32. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33266-1_4

    Chapter  Google Scholar 

  26. de Sá, C.R., Soares, C., Jorge, A.M., Azevedo, P., Costa, J.: Mining association rules for label ranking. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011. LNCS (LNAI), vol. 6635, pp. 432–443. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20847-8_36

    Chapter  Google Scholar 

  27. Shaffer, J.P.: Multiple hypothesis testing. Annu. Rev. Psychol. 46(1), 561–584 (1995)

    Article  Google Scholar 

  28. de Sá, C.R., Soares, C., Knobbe, A.J., Cortez, P.: Label ranking forests. Expert Systems 34(1), e12166 (2017)

    Article  Google Scholar 

  29. Cheng, W., Henzgen, S., Hüllermeier, E.: Labelwise versus pairwise decomposition in label ranking. In: Proceedings of the Workshop on Lernen, Wissen & Adaptivität, pp. 129–136 (2013)

    Google Scholar 

  30. Zhou, Y., Qiu, G.: Random forest for label ranking. Expert Syst. Appl. 112, 99–109 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by FEDER funds, the Spanish Government (AEI/MINECO) through the project TIN2016-77902-C3-1-P and the Regional Government (JCCM) by SBPLY/17/180501/000493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Alfaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alfaro, J.C., Rodrigo, E.G., Aledo, J.Á., Gámez, J.A. (2019). A Probabilistic Graphical Model-Based Approach for the Label Ranking Problem. In: Kern-Isberner, G., Ognjanović, Z. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2019. Lecture Notes in Computer Science(), vol 11726. Springer, Cham. https://doi.org/10.1007/978-3-030-29765-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29765-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29764-0

  • Online ISBN: 978-3-030-29765-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics