Abstract
MELODIC is and open source platform for autonomic deployment and optimized management of Cross-Cloud applications. The MELODIC platform is a complete, enterprise ready solution using only open source software. The contribution of this paper is the discussion of approaches to integration and various options for large scale open source projects and their evaluation showing that only a combination of an Enterprise Service Bus (ESB) with Business Process Management (BPM) for platform integration and control, and the use of a distributed Event Management Services (EMS) for monitoring state and creating context awareness, will provide the required stability and reliability. Consequently, the selection, the evaluation, and the design process of these three crucial components of the MELODIC platform are described.
This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731664 MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
References
Albek, E., Bax, E., Billock, G., Chandy, K.M., Swett, I.: An event processing language (EPL) for building sense and respond applications. In: 19th IEEE International Parallel and Distributed Processing Symposium, pp. 5 pp.-, April 2005. https://doi.org/10.1109/IPDPS.2005.97
Rossini, A., et al.: The cloud application modelling and execution language (CAMEL), p. 39. Open Access Repositorium der Universität Ulm (2017). https://doi.org/10.18725/OPARU-4339
Bergmayr, A., et al.: The evolution of CloudML and its applications. In: Paige, R., Cabot, J., Brambilla, M., Hill, J.H. (eds.) Proceedings of the 3rd International Workshop on Model-Driven Engineering on and for the Cloud and 18th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2015), vol. 1563, pp. 13–18. CEUR Workshop Proceedings (2015). http://ceur-ws.org/Vol-1563/
Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework. Part of the Eclipse Series series, 2nd edn. Addison-Wesley Professional, Boston (2008)
Dayarathna, M., Perera, S.: Recent advancements in event processing. ACM Comput. Surv. (CSUR) 51(2), 33 (2018)
Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of virtual machines and Linux containers. In: 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172, March 2015. https://doi.org/10.1109/ISPASS.2015.7095802
Horn, G.: A vision for a stochastic reasoner for autonomic cloud deployment. In: Babar, M.A., Dumas, M., Solberg, A. (eds.) Proceedings of the Second Nordic Symposium on Cloud Computing & Internet Technologies (NordiCloud 2013), pp. 46–53. ACM, Oslo, September 2013. https://doi.org/10.1145/2513534.2513543
Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27 (2009). https://doi.org/10.1109/MC.2009.326
Jeffery, K., Houssos, N., Jörg, B., Asserson, A.: Research information management: the CERIF approach. Int. J. Metadata Semant. Ontol. 9(1), 5–14 (2014). https://doi.org/10.1504/IJMSO.2014.059142
Jeffery, K., Horn, G., Schubert, L.: A vision for better cloud applications. In: Ardagna, D., Schubert, L. (eds.) Proceedings of the 2013 International Workshop on Multi-Cloud Applications and Federated Clouds, MultiCloud 2013, pp. 7–12. ACM, Prague, April 2013. https://doi.org/10.1145/2462326.2462329
Kritikos, K., Domaschka, J., Rossini, A.: SRL: a scalability rule language for multi-cloud environments. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, pp. 1–9, December 2014. https://doi.org/10.1109/CloudCom.2014.170
Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. SEI Series in Software Engineering, 1st edn. Addison Wesley, Boston (2015)
Mdhaffar, A., Halima, R.B., Jmaiel, M., Freisleben, B.: A dynamic complex event processing architecture for cloud monitoring and analysis. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, vol. 2, pp. 270–275. IEEE (2013)
Munawar, M.A., Ward, P.A.: Adaptive monitoring in enterprise software systems. SysML, June 2006
Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M., Solberg, A.: CloudMF: model-driven management of multi-cloud applications. ACM Trans. Internet Technol. (TOIT) 18(2), 16:1–16:24 (2018). https://doi.org/10.1145/3125621
Paraiso, F., Hermosillo, G., Rouvoy, R., Merle, P., Seinturier, L.: A middleware platform to federate complex event processing. In: 2012 IEEE 16th International Enterprise Distributed Object Computing Conference (EDOC), pp. 113–122. IEEE (2012)
Quinton, C., Haderer, N., Rouvoy, R., Duchien, L.: Towards multi-cloud configurations using feature models and ontologies. In: Proceedings of the 2013 International Workshop on Multi-Cloud Applications and Federated Clouds, MultiCloud 2013, Prague, Czech Republic, pp. 21–26. ACM, New York (2013). https://doi.org/10.1145/2462326.2462332
Reidemeister, T.: Fault diagnosis in enterprise software systems using discrete monitoring data. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada (2012)
Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event processing with query rewriting. In: Proceedings of the Third ACM International Conference on Distributed Event-Based Systems, p. 4. ACM (2009)
Stefanidis, V., Verginadis, Y., Patiniotakis, I., Mentzas, G.: Distributed complex event processing in multiclouds. In: Kritikos, K., Plebani, P., de Paoli, F. (eds.) ESOCC 2018. LNCS, vol. 11116, pp. 105–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99819-0_8
Verginadis, Y., et al.: D5.1 integration and adaptation strategy. Technical report, The MELODIC project, February 2018. https://melodic.cloud/, http://www.melodic.cloud/deliverables/D5.1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Horn, G., Skrzypek, P., Prusiński, M., Materka, K., Stefanidis, V., Verginadis, Y. (2019). MELODIC: Selection and Integration of Open Source to Build an Autonomic Cross-Cloud Deployment Platform. In: Mazzara, M., Bruel, JM., Meyer, B., Petrenko, A. (eds) Software Technology: Methods and Tools. TOOLS 2019. Lecture Notes in Computer Science(), vol 11771. Springer, Cham. https://doi.org/10.1007/978-3-030-29852-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-29852-4_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29851-7
Online ISBN: 978-3-030-29852-4
eBook Packages: Computer ScienceComputer Science (R0)