Skip to main content

Active Image Data Augmentation

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Abstract

Deep neural networks models have achieved state-of-the-art results in a great number of different tasks in different domains (e.g., natural language processing and computer vision). However, the notions of robustness, causality, and fairness are not measured in traditional evaluated settings. In this work, we proposed an active data augmentation method to improve the model robustness to new data. We use the Vanilla Backpropagation to visualize what the trained model consider important in the input information. Based on that information, we augment the training dataset with new data to refine the model training. The objective is to make the model robust and effective for important input information. We evaluated our approach in a Spinal Cord Gray Matter Segmentation task and verified improvement in robustness while keeping the model competitive in the traditional metrics. Besides, we achieve the state-of-the-art results on that task using a U-Net based model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://niftyweb.cs.ucl.ac.uk/program.php?p=CHALLENGE.

References

  1. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2425–2433 (2015)

    Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  3. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  8. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)

    Google Scholar 

  9. Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW), pp. 117–122. IEEE (2018)

    Google Scholar 

  10. Pereira, S., Meier, R., Alves, V., Reyes, M., Silva, C.A.: Automatic brain tumor grading from MRI data using convolutional neural networks and quality assessment. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 106–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_12

    Chapter  Google Scholar 

  11. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  12. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  13. Perone, C.S., Calabrese, E., Cohen-Adad, J.: Spinal cord gray matter segmentation using deep dilated convolutions. Sci. Rep. 8(1), 5966 (2018)

    Article  Google Scholar 

  14. Porisky, A., et al.: Grey matter segmentation in spinal cord MRIs via 3D convolutional encoder networks with shortcut connections. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 330–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_38

    Chapter  Google Scholar 

  15. Prados, F.: Spinal cord grey matter segmentation challenge. Neuroimage 152, 312–329 (2017)

    Article  Google Scholar 

  16. Rieke, J., Eitel, F., Weygandt, M., Haynes, J., Ritter, K.: Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. CoRR abs/1808.02874 (2018). http://arxiv.org/abs/1808.02874

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  19. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  20. Xie, X., Li, Y., Shen, L.: Active learning for breast cancer identification. CoRR abs/1804.06670 (2018). http://arxiv.org/abs/1804.06670

  21. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  22. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks (2010)

    Google Scholar 

  23. Zhang, Q., Cao, R., Shi, F., Wu, Y.N., Zhu, S.C.: Interpreting CNN knowledge via an explanatory graph. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  24. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. CoRR abs/1807.02758 (2018). http://arxiv.org/abs/1807.02758

Download references

Acknowledgments

This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. The authors also thanks CAPES and CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flávio Arthur Oliveira Santos , Cleber Zanchettin , Leonardo Nogueira Matos or Paulo Novais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, F.A.O., Zanchettin, C., Matos, L.N., Novais, P. (2019). Active Image Data Augmentation. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics