Skip to main content

Inferring Knowledge from Clinical Data for Anesthesia Automation

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Abstract

The use of Hybrid Artificial Intelligent techniques in medicine has increased in recent years. Specifically, one of the main challenges in anesthesia is achieving new controllers capable of automating the drug titration during surgeries. This work deals with the development of a Takagi-Sugeno fuzzy controller to automate the drug infusion for the control of hypnosis in patients undergoing anesthesia. To do that, a combination of Neural Networks and optimization techniques were applied to tune the internal parameters of the fuzzy controller. For the training process, data from 20 patients undergoing surgery were used. Finally, the controller proposed was tested over 16 virtual surgeries. It was concluded that the fuzzy controller was able to meet both clinical and control objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. González Gutiérrez, C., Sánchez Rodríguez, M.L., Fernández Diáz, R.Á., Calvo Rolle, J.L., Roqueñí Gutiérrez, N., Javier De Cos Juez, F.: Rapid tomographic reconstruction through GPU-based adaptive optics. Log. J. IGPL 27, 214–226 (2019)

    Article  MathSciNet  Google Scholar 

  2. Vega Vega, R., Quintián, H., Calvo-Rolle, J.L., Herrero, Á., Corchado, E.: Gaining deep knowledge of Android malware families through dimensionality reduction techniques. Log. J. IGPL 27, 160–176 (2019)

    Article  MathSciNet  Google Scholar 

  3. Méndez Pérez, J.A., Torres, S., Reboso, J.A., Reboso, H.: Estrategias de Control en la Práctica de Anestesia. Rev. Iberoam. Automática e Informática Ind. RIAI 8(3), 241–249 (2011)

    Article  Google Scholar 

  4. Reboso, J.A., Gonzalez-Cava, J.M., Leon, A., Mendez-Perez, J.A.: Closed loop administration of propofol based on a Smith predictor: a randomized controlled trial. Minerva Anestesiol. 85, 585–593 (2018)

    Google Scholar 

  5. Le Guen, M., et al.: Automated sedation outperforms manual administration of propofol and remifentanil in critically ill patients with deep sedation: a randomized phase II trial. Intensive Care Med. 39, 454–462 (2013)

    Article  Google Scholar 

  6. Engbers, F.H.M., Dahan, A.: Anomalies in target-controlled infusion: an analysis after 20 years of clinical use. Anaesthesia 73, 619–630 (2018)

    Article  Google Scholar 

  7. Casteleiro-Roca, J.-L., Jove, E., Gonzalez-Cava, J.M., Méndez Pérez, J.A., Calvo-Rolle, J.L., Blanco Alvarez, F.: Hybrid model for the ANI index prediction using Remifentanil drug and EMG signal. Neural Comput. Appl. 2018, 1–10 (2018)

    Google Scholar 

  8. Marrero, A., Méndez, J.A., Reboso, J.A., Martín, I., Calvo, J.L.: Adaptive fuzzy modeling of the hypnotic process in anesthesia. J. Clin. Monit. Comput. 31(2), 319–330 (2017)

    Article  Google Scholar 

  9. Sippl, P., Ganslandt, T., Prokosch, H.U., Muenster, T., Toddenroth, D.: Machine learning models of post-intubation hypoxia during general anesthesia. Stud. Health Technol. Inform. 243, 212–216 (2017)

    Google Scholar 

  10. Rocha, C., Mendonça, T., Eduarda Silva, M.: Modelling neuromuscular blockade: a stochastic approach based on clinical data. Math. Comput. Model. Dyn. Syst. 19, 540–546 (2013)

    Article  MathSciNet  Google Scholar 

  11. Esteban Jove, J.L.C.-R., et al.: Modelling the hypnotic patient response in general anaesthesia using intelligent models. Log. J. IGPL 27, 189–201 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ilyas, M., Butt, M.F.U., Bilal, M., Mahmood, K., Khaqan, A., Ali Riaz, R.: A review of modern control strategies for clinical evaluation of propofol anesthesia administration employing hypnosis level regulation. Biomed. Res. Int. 2017, 12 (2017)

    Article  Google Scholar 

  13. van Heusden, K., et al.: Optimizing robust PID control of propofol anesthesia for children; design and clinical evaluation. IEEE Trans. Biomed. Eng. PP, 1 (2019)

    Article  Google Scholar 

  14. Dineva, A., Tar, J.K., Várkonyi-Kóczy, A., Piuri, V.: Adaptive controller using fixed point transformation for regulating propofol administration through wavelet-based anesthetic value. In: Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2016 (2016)

    Google Scholar 

  15. Mendez, J.A., et al.: Improving the anesthetic process by a fuzzy rule based medical decision system. Artif. Intell. Med. 84, 159–170 (2018)

    Article  Google Scholar 

  16. Mendez, J.A., Marrero, A., Reboso, J.A., Leon, A.: Adaptive fuzzy predictive controller for anesthesia delivery. Control Eng. Pract. 46, 1–9 (2016)

    Article  Google Scholar 

  17. Chang, J.J., Syafiie, S., Kamil, R., Lim, T.A.: Automation of anaesthesia: a review on multivariable control. J. Clin. Monit. Comput. 29(2), 231–239 (2015)

    Article  Google Scholar 

  18. Bouillon, T.W., et al.: Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology 100(6), 1353–1372 (2004)

    Article  Google Scholar 

  19. Passino, K.M., Yurkovich, S.: Fuzzy control. In: Levine, W.S. (ed.) The Control Systems Handbook: Control System Advanced Methods, 2nd edn. Addison-Wesley, Boston (2010)

    Google Scholar 

  20. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. (Ny). 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  21. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  22. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)

    Article  Google Scholar 

  23. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  24. Gambús, P.L., Trocõniz, I.F.: Pharmacokinetic-pharmacodynamic modelling in anaesthesia. Br. J. Clin. Pharmacol. 79, 72–84 (2015)

    Article  Google Scholar 

  25. Minto, C.F., Schnider, T.W.: Contributions of PK/PD modeling to intravenous anesthesia. Clin. Pharmacol. Ther. 84, 27–38 (2008)

    Article  Google Scholar 

  26. DiLorenzo, A.N., Schell, R.M.: Morgan & Mikhail’s Clinical Anesthesiology. Anesth. Analg. 119, 495–496 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

José Manuel Gonzalez-Cava’s research was supported by the Spanish Ministry of Science, Innovation and Universities (http://www.ciencia.gob.es/) under the “Formación de Profesorado Universitario” grant FPU15/03347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Gonzalez-Cava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzalez-Cava, J.M. et al. (2019). Inferring Knowledge from Clinical Data for Anesthesia Automation. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics