Abstract
To provide recommendations to groups of people is a complex task, especially due to the group’s heterogeneity and conflicting preferences and personalities. This heterogeneity is even deeper in occasional groups formed for predefined tour packages in tourism. Group Recommender Systems (GRS) are being designed for helping in situations like those. However, many limitations can still be found, either on their time-consuming configurations and excessive intrusiveness to build the tourists’ profile, or in their lack of concern for the tourists’ interests during the planning and tours, like feeling a greater liberty, diminish the sense of fear/being lost, increase their sense of companionship, and promote the social interaction among them without losing a personalized experience. In this paper, we propose a conceptual model that intends to enhance GRS for tourism by using gamification techniques, intelligent agents modeled with the tourists’ context and profile, such as psychological and socio-cultural aspects, and dialogue games between the agents for the post-recommendation process. Some important aspects of a GRS for tourism are also discussed, opening the way for the proposed conceptual model, which we believe will help to solve the identified limitations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Or possibly another device, like Google Glasses®, but that is another chapter, not to be addressed in this work.
References
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35, 61–70 (1992)
Jameson, A., et al.: Human decision making and recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 611–648. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_18
Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40, 56–58 (1997)
Nguyen, T.N., Ricci, F.: A chat-based group recommender system for tourism. Inf. Technol. Tourism 18, 5–28 (2018)
Boratto, L., Carta, S.: State-of-the-art in group recommendation and new approaches for automatic identification of groups. In: Soro, A., Vargiu, E., Armano, G., Paddeu, G. (eds) Information Retrieval and Mining in Distributed Environments. Studies in Computational Intelligence, vol. 324, pp. 1–20. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-16089-9_1
del Carmen Rodríguez-Hernández, M., Ilarri, S., Hermoso, R., Trillo-Lado, R.: Towards trajectory-based recommendations in museums: evaluation of strategies using mixed synthetic and real data. Procedia Comput. Sci. 113, 234–239 (2017)
Lamsfus, C., Wang, D., Alzua-Sorzabal, A., Xiang, Z.: Going mobile: defining context for on-the-go travelers. J. Travel Res. 54, 691–701 (2015)
Masthoff, J.: Group recommender systems: combining individual models. In: Ricci, F., Rokach, L., Shapira, B., Kantor, Paul B. (eds.) Recommender Systems Handbook, pp. 677–702. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_21
Castro, J., Quesada, F.J., Palomares, I., Martinez, L.: A consensus-driven group recommender system. Int. J. Intell. Syst. 30, 887–906 (2015)
Masthoff, J.: Group recommender systems: aggregation, satisfaction and group attributes. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 743–776. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_22
Delic, A., Masthoff, J.: Group recommender systems. In: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 377–378. ACM (2018)
McCarthy, K., Salamó, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: a critiquing based approach. In: Proceedings of the 11th International Conference on Intelligent User Interfaces, pp. 267–269. ACM (2006)
Nasolomampionona, R.F.: Profile of Chinese outbound tourists: characteristics and expenditures. Am. J. Tourism Manage. 3, 17–31 (2014)
Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: Intrigue: personalized recommendation of tourist attractions for desktop and hand held devices. Appl. Artif. Intell. 17, 687–714 (2003)
McCarthy, K., McGinty, L., Smyth, B., Salamó, M.: Social interaction in the cats group recommender. In: Workshop on the Social Navigation and Community Based Adaptation Technologies (2006)
Garcia, I., Sebastia, L., Onaindia, E., Guzman, C.: A group recommender system for tourist activities. In: Di Noia, T., Buccafurri, F. (eds.) EC-Web 2009. LNCS, vol. 5692, pp. 26–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03964-5_4
Jameson, A., Baldes, S., Kleinbauer, T.: Enhancing mutual awareness in group recommender systems. In: Proceedings of the IJCAI (2003)
van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application COMPASS. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 235–244. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27780-4_27
Marques, G., Respício, A., Afonso, A.P.: A mobile recommendation system supporting group collaborative decision making. Procedia Comput. Sci. 96, 560–567 (2016)
Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 353–382. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_10
Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. ACM (2000)
McBurney, P., Parsons, S.: Dialogue games for agent argumentation. In: Simari, G., Rahwan, I. (eds) Argumentation in Artificial Intelligence, pp. 261–280 (2009). Springer, Boston. https://doi.org/10.1007/978-0-387-98197-0_13
Carneiro, J., Martinho, D., Marreiros, G., Jimenez, A., Novais, P.: Dynamic argumentation in UbiGDSS. Knowl. Inf. Syst. 55, 633–669 (2018)
Carneiro, J., Alves, P., Marreiros, G., Novais, P.: A multi-agent system framework for dialogue games in the group decision-making context. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 930, pp. 437–447. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16181-1_41
Walton, D., Krabbe, E.C.: Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. SUNY press, New York (1995)
Carneiro, J., Martinho, D., Marreiros, G., Novais, P.: Arguing with behavior influence: a model for web-based group decision support systems. Int. J. Inf. Technol. Decis. Making 1–37 (2018)
Carneiro, J., Saraiva, P., Martinho, D., Marreiros, G., Novais, P.: Representing decision-makers using styles of behavior: an approach designed for group decision support systems. Cognit. Syst. Res. 47, 109–132 (2018)
Villamizar, M., et al.: Evaluating the monolithic and the microservice architecture pattern to deploy web applications in the cloud. In: 2015 10th Computing Colombian Conference (10CCC), pp. 583–590. IEEE (2015)
Ricci, F.: Travel recommender systems. IEEE Intell. Syst. 17, 55–57 (2002)
Schmidt-Belz, B., Nick, A., Poslad, S., Zipf, A.: Personalized and location-based mobile tourism services. In: Workshop on “Mobile Tourism Support Systems” in conjunction with Mobile HCI (2002)
Gavalas, D., Kenteris, M.: A web-based pervasive recommendation system for mobile tourist guides. Pers. Ubiquit. Comput. 15, 759–770 (2011)
Tkalcic, M., Chen, L.: Personality and recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 715–739. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_21
Feil, S., Kretzer, M., Werder, K., Maedche, A.: Using gamification to tackle the cold-start problem in recommender systems. In: Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, pp. 253–256. ACM (2016)
de C.A. Ziesemer, A., Müller, L., Silveira, M.S.: Just rate it! gamification as part of recommendation. In: Kurosu, M. (ed.) HCI 2014. LNCS, vol. 8512, pp. 786–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07227-2_75
Friedman, H.S., Schustack, M.W.: Personality: Classic Theories and Modern Research. Allyn and Bacon, Boston (1999)
Hamari, J.: Transforming homo economics into homo ludens: a field experiment on gamification in a utilitarian peer-to-peer trading service. Electron. Commer. Res. Appl. 12, 236–245 (2013)
Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?–a literature review of empirical studies on gamification. In: 2014 47th Hawaii International Conference on System Sciences (HICSS), pp. 3025–3034. IEEE (2014)
Hamari, J., Shernoff, D.J., Rowe, E., Coller, B., Asbell-Clarke, J., Edwards, T.: Challenging games help students learn: an empirical study on engagement, flow and immersion in game-based learning. Comput. Hum. Behav. 54, 170–179 (2016)
Hakulinen, L., Auvinen, T., Korhonen, A.: The effect of achievement badges on students’ behavior: an empirical study in a university-level computer science course. Int. J. Emerg. Technol. Learn. (iJET) 10, 18–29 (2015)
Mortara, M., Catalano, C.E., Bellotti, F., Fiucci, G., Houry-Panchetti, M., Petridis, P.: Learning cultural heritage by serious games. J. Cult. Heritage 15, 318–325 (2014)
Delic, A., Neidhardt, J., Nguyen, N., Ricci, F.: Research Methods for Group Recommender System. CEUR-WS (2016)
Xu, F., Tian, F., Buhalis, D., Weber, J., Zhang, H.: Tourists as mobile gamers: Gamification for tourism marketing. J. Travel Tourism Mark. 33, 1124–1142 (2016)
Acknowledgements
This work was supported by the GrouPlanner Project (POCI-01-0145-FEDER-29178) and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the Projects UID/CEC/00319/2019 and UID/EEA/00760/2019.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Alves, P., Carneiro, J., Marreiros, G., Novais, P. (2019). Modeling a Mobile Group Recommender System for Tourism with Intelligent Agents and Gamification. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)