Skip to main content

Mining Network Motif Discovery by Learning Techniques

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Abstract

Properties of complex networks represent a powerful set of tools that can be used to study the complex behaviour of these systems of interconnections. They can vary from properties represented as simplistic metrics (number of edges and nodes) to properties that reflect complex information of the connection between entities part of the network (assortativity degree, density or clustering coefficient). Such a topological property that has valuable implications on the study of the networks dynamics are network motifs - patterns of interconnections found in real-world networks. Knowing that one of the biggest issue with network motifs discovery is its algorithmic NP-complete nature, this paper intends to present a method to detect if a network is prone or not to generate motifs by making use of its topological properties while training various classification models. This approach wants to serve as a time saving pre-processing step for the state-of-the-art solutions used to detect motifs in Complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhowan, U., Johnston, M., Zhang, M.: Developing new fitness functions in genetic programming for classification with unbalanced data. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42, 406–421 (2012). https://doi.org/10.1109/TSMCB.2011.2167144

    Article  Google Scholar 

  3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016). https://doi.org/10.1145/2939672.2939785

  4. Coutinho, B., et al.: The Network Behind the Cosmic Web. http://cosmicweb.kimalbrecht.com

  5. Fernandez-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_7

    Chapter  Google Scholar 

  7. Hu, J., Shang, X.: Detection of network motif based on a novel graph canonization algorithm from transcriptional regulation networks. Molecules 22, 2194 (2017). https://doi.org/10.3390/molecules22122194

    Article  Google Scholar 

  8. Jin, X., Li, J., Zhang, L.: Online social networks based on complex network theory and simulation analysis. In: Wong, W.E. (ed.) Proceedings of the 4th International Conference on Computer Engineering and Networks, pp. 1129–1138. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11104-9_130

    Chapter  Google Scholar 

  9. Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC Bioinform. 10, 318 (2009)

    Article  Google Scholar 

  10. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics (Oxford, England) 20, 1746–1758 (2004)

    Article  Google Scholar 

  11. Kunegis, J., Preusse, J.: Fairness on the web: alternatives to the power law. In: Proceedings of the 3rd Annual ACM Web Science Conference, WebSci 2012, pp. 175–184, June 2012. https://doi.org/10.1145/2380718.2380741

  12. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  13. Mursa, B.E.M., Andreica, A., Laura, D.: Parallel acceleration of subgraph enumeration in the process of network motif detection. In: 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (2018)

    Google Scholar 

  14. Mursa, B.E.M., Andreica, A., Laura, D.: An empirical analysis of the correlation between the motifs frequency and the topological properties of complex networks. In: 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (2019)

    Google Scholar 

  15. Mursa, B.E.M., Andreica, A., Laura, D.: Study of connection between articulation points and network motifs in complex networks. In: Proceedings of the 27th European Conference on Information Systems (ECIS) (2019)

    Google Scholar 

  16. Noldus, R., Van Mieghem, P.: Assortativity in complex networks. J. Complex Netw. 2015 (2015). https://doi.org/10.1093/comnet/cnv005

    Article  MathSciNet  Google Scholar 

  17. Omidi, S., Schreiber, F., Masoudi-Nejad, A.: MODA: an efficient algorithm for network motif discovery in biological networks. Genes Genet. Syst. 84, 385–395 (2009)

    Article  Google Scholar 

  18. Krishna Raj, P.M., Mohan, A., Srinivasa, K.G.: Basics of graph theory. Practical Social Network Analysis with Python. CCN, pp. 1–23. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96746-2_1

    Chapter  Google Scholar 

  19. Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichiacoli. Nat. Genet. 31, 1061–4036 (2002)

    Article  Google Scholar 

  20. Svenson, P.: Complex networks and social network analysis in information fusion. In: 2006 9th International Conference on Information Fusion, pp. 1–7, August 2006. https://doi.org/10.1109/ICIF.2006.301554

  21. Van Hulse, J., Khoshgoftaar, T., Napolitano, A.: Experimental perspectives on learning from imbalanced data, vol. 227, pp. 935–942, January 2007. https://doi.org/10.1145/1273496.1273614

  22. Watts, D.H. Strogatz, S.: Collective dynamics of ‘small-world’ networks. In: The Structure and Dynamics of Networks, December 2011. https://doi.org/10.1515/9781400841356.301

    Google Scholar 

  23. Wernicke, S.: A faster algorithm for detecting network motifs. Algorithms Bioniform. Proc. 3692, 165–177 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan-Eduard-Mădălin Mursa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mursa, BEM., Andreica, A., Dioşan, L. (2019). Mining Network Motif Discovery by Learning Techniques. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics