Skip to main content

Breast Cancer Computer-Aided Diagnosis System Using k-NN Algorithm Based on Hausdorff Distance

  • Conference paper
  • First Online:
Current Trends in Biomedical Engineering and Bioimages Analysis (PCBEE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1033))

Included in the following conference series:

  • 457 Accesses

Abstract

World statistics indicate that the breast cancer is the most common worldwide type of cancer among women. The development of computer-aided diagnosis techniques may contribute to a more effective therapy against this type of cancer. In this work, we present preliminary research regarding cell nuclei classification based on the Hausdorff distance. The obtained results indicate that using only Hausdorff distance to the classification of individual cell nuclei allows us to achieve 75% accuracy. Moreover, the speed of calculations and the possibility of using additional features describing cell nuclei open new paths to computer-aided diagnosis support systems development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Chavent, M.: A Hausdorff distance between hyper-rectangles for clustering interval data. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications, pp. 333–339. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-17103-1_32

    Chapter  Google Scholar 

  3. Cheng, F., Hsu, N.: Automated cell nuclei segmentation from microscopic images of cervical smear. In: 2016 International Conference on Applied System Innovation (ICASI), pp. 1–4 (2016). https://doi.org/10.1109/ICASI.2016.7539846

  4. Cui, Y., Zhang, G., Liu, Z., Xiong, Z., Hu, J.: A deep learning algorithm for one-step contour aware nuclei segmentation of histopathological images. arXiv preprint: arxiv:1803.02786 (2018)

  5. Dubuisson, M., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568 (1994). https://doi.org/10.1109/ICPR.1994.576361

  6. Fondón, I., Sarmiento, A., García, A.I., Silvestre, M., Eloy, C., Polónia, A., Aguiar, P.: Automatic classification of tissue malignancy for breast carcinoma diagnosis. Comput. Biol. Med. 96, 41–51 (2018). https://doi.org/10.1016/j.compbiomed.2018.03.003

    Article  Google Scholar 

  7. Husham, A., Hazim Alkawaz, M., Saba, T., Rehman, A., Saleh Alghamdi, J.: Automated nuclei segmentation of malignant using level sets. Microsc. Res. Tech. 79(10), 993–997 (2016). https://doi.org/10.1002/jemt.22733

    Article  Google Scholar 

  8. Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2014). https://doi.org/10.1109/RBME.2013.2295804

    Article  Google Scholar 

  9. Kowal, M., Skobel, M., Nowicki, N.: The feature selection problem in computer-assisted cytology. Int. J. Appl. Math. Comput. Sci. 28(4), 759–770 (2018). https://doi.org/10.2478/amcs-2018-0058

    Article  MathSciNet  MATH  Google Scholar 

  10. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017). https://doi.org/10.1109/TMI.2017.2677499

    Article  Google Scholar 

  11. Naylor, P., Laé, M., Reyal, F., Walter, T.: Nuclei segmentation in histopathology images using deep neural networks. In: IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 933–936 (2017). https://doi.org/10.1109/ISBI.2017.7950669

  12. Paramanandam, M., O’Byrne, M., Ghosh, B., Mammen, J.J., Manipadam, M.T., Thamburaj, R., Pakrashi, V.: Automated segmentation of nuclei in breast cancer histopathology images. PLoS ONE 11(9), 1–15 (2016). https://doi.org/10.1371/journal.pone.0162053

    Article  Google Scholar 

  13. Paramanandam, M., Thamburaj, R., Manipadam, M.T., Nagar, A.K.: Boundary extraction for imperfectly segmented nuclei in breast histopathology images – a convex edge grouping approach. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) Combinatorial Image Analysis, pp. 250–261. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-07148-0_22

    Chapter  Google Scholar 

  14. Reis, S., Gazinska, P., Hipwell, J.H., Mertzanidou, T., Naidoo, K., Williams, N., Pinder, S., Hawkes, D.J.: Automated classification of breast cancer stroma maturity from histological images. IEEE Trans. Biomed. Eng. 64(10), 2344–2352 (2017). https://doi.org/10.1109/TBME.2017.2665602

    Article  Google Scholar 

  15. Sadanandan, S.K., Ranefall, P., Le Guyader, S., Wahlby, C.: Automated training of deep convolutional neural networks for cell segmentation. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-07599-6

  16. Szemenyei, M., Vajda, F.: Dimension reduction for objects composed of vector sets. Int. J. Appl. Math. Comput. Sci. 27(1), 169–180 (2017). https://doi.org/10.1515/amcs-2017-0012

    Article  MathSciNet  MATH  Google Scholar 

  17. Tian, K., Yang, X., Kong, Q., Yin, C., He, R., Yau, S.S.-T.: Two dimensional Yau-Hausdorff distance with applications on comparison of DNA and protein sequences. PloS ONE 10, e0136577 (2015). https://doi.org/10.1371/journal.pone.0136577

    Article  Google Scholar 

  18. Veta, M., van Diest, P.J., Kornegoor, R., Huisman, A., Viergever, M.A., Pluim, J.P.W.: Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS ONE 8(7) (2013). https://doi.org/10.1371/journal.pone.0070221

    Article  Google Scholar 

  19. Wang, P., Hu, X., Li, Y., Liu, Q., Zhu, X.: Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Sig. Process. 122, 1–13 (2016). https://doi.org/10.1016/j.sigpro.2015.11.011

    Article  Google Scholar 

  20. Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M., Hufnagl, P., Dietel, M., Denkert, C., Klauschen, F.: Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci. Rep. 2, 503 (2012). https://doi.org/10.1038/srep00503

    Article  Google Scholar 

  21. Yang, X., Li, H., Zhou, X.: Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans. Circuits Syst. I Regul. Pap. 53(11), 2405–2414 (2006). https://doi.org/10.1109/TCSI.2006.884469

    Article  Google Scholar 

Download references

Acknowledgement

The research was supported by National Science Centre, Poland (2015/17/B/ST7/03704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Skobel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skobel, M., Kowal, M., Korbicz, J. (2020). Breast Cancer Computer-Aided Diagnosis System Using k-NN Algorithm Based on Hausdorff Distance. In: Korbicz, J., Maniewski, R., Patan, K., Kowal, M. (eds) Current Trends in Biomedical Engineering and Bioimages Analysis. PCBEE 2019. Advances in Intelligent Systems and Computing, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-030-29885-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29885-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29884-5

  • Online ISBN: 978-3-030-29885-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics