Skip to main content

A Workspace Analysis for a Planar Model of a Tibiofemoral Joint - A Preliminary Study

  • Conference paper
  • First Online:
Current Trends in Biomedical Engineering and Bioimages Analysis (PCBEE 2019)

Abstract

The aim of this study was to compute and analyze the workspace of a tibiofemoral joint. To facilitate this research, an established, planar multibody model the joint was used. The model was composed of two rigid bodies corresponding to the tibia/fibula complex and the femur. These bodies were connected by a system of four nonlinear cables representing the ligaments and two Hertzian contact pairs, which modeled the cartilage of the knee. The workspace was computed by iteratively modifying the location of the tibia/fibula segment, specified by two linear coordinates and one angular coordinate. At each location, custom software prepared in Python iterated over the six elements of the joint and computed the loads that they generated. These loads were then compared to the maximal safe loads taken from published experimental studies. The obtained workspace of the tibiofemoral joint was moon-shaped with varying thickness. The largest workspace area was observed for a partially bent knee at 40.00°. Furthermore, significant reductions in the workspace were noted for hyperextension and deep flexion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciszkiewicz, A., Milewski, G.: Path planning for minimally-invasive knee surgery using a hybrid optimization procedure. Comput. Methods Biomech. Biomed. Eng. 21, 47–54 (2018)

    Article  Google Scholar 

  2. Klekiel, T., Będziński, R.: Finite element analysis of large deformation of articular cartilage in upper ankle joint of occupant in military vehicles during explosion. Arch. Metall. Mater. 60, 2115–2121 (2015)

    Article  Google Scholar 

  3. Tak-Man Cheung, J., Zhang, M., An, K.N.: Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin. Biomech. 19, 839–846 (2004)

    Article  Google Scholar 

  4. Szkoda-Poliszuk, K., Żak, M., Pezowicz, C.: Finite element analysis of the influence of three-joint spinal complex on the change of the intervertebral disc bulge and height. Int. J. Numer. Method Biomed. Eng. 34 (2018)

    Article  Google Scholar 

  5. Latypova, A., Arami, A., Becce, F., Jolles-Haeberli, B., Aminian, K., Pioletti, D.P., Terrier, A.: A patient-specific model of total knee arthroplasty to estimate patellar strain: a case study. Clin. Biomech. 32, 212–219 (2016)

    Article  Google Scholar 

  6. Arkusz, K., Klekiel, T., Sławiński, G., Będziński, R.: Pelvic vertical shear fractures: the damping properties of ligaments depending on the velocity of vertical impact load. In: AIP Conference Proceedings 2078, p. 020077 (2019)

    Google Scholar 

  7. Kubicek, M., Florian, Z.: Stress strain analysis of knee joint. Eng. Mech. 16, 315–322 (2009)

    Google Scholar 

  8. Machado, M., Flores, P., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60, 459–478 (2009)

    Article  Google Scholar 

  9. Parenti-Castelli, V., Leardini, A., Gregorio, R., O’Connor, J.: On the modeling of passive motion of the human knee joint by means of equivalent planar and spatial parallel mechanisms. Aut. Robot. 16, 219–232 (2004)

    Article  Google Scholar 

  10. Leardini, A., O’Connor, J.J., Catani, F., Giannini, S.: A geometric model of the human ankle joint. J. Biomech. 32, 585–591 (1999)

    Article  Google Scholar 

  11. Ciszkiewicz, A., Milewski, G.: Ligament-based spine-segment mechanisms. Bull. Polish Acad. Sci. Tech. Sci. 66, 705–712 (2018)

    Google Scholar 

  12. Ciszkiewicz, A., Knapczyk, J.: Load analysis of a patellofemoral joint by a quadriceps muscle. Acta Bioeng. Biomech. 18, 111–119 (2016)

    Google Scholar 

  13. Ciszkiewicz, A., Milewski, G.: A novel kinematic model for a functional spinal unit and a lumbar spine. Acta Bioeng. Biomech. 18, 87–95 (2016)

    Google Scholar 

  14. Gudavalli, M.R., Triano, J.J.: An analytical model of lumbar motion segment in flexion. J. Manipulative Physiol. Ther. 22, 201–208 (1999)

    Article  Google Scholar 

  15. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007)

    Article  Google Scholar 

  16. Montefiori, E., Modenese, L., Di Marco, R., Magni-Manzoni, S., Malattia, C., Petrarca, M., Ronchetti, A., de Horatio, L.T., van Dijkhuizen, P., Wang, A., Wesarg, S., Viceconti, M., Mazzà, C.: An image-based kinematic model of the tibiotalar and subtalar joints and its application to gait analysis in children with Juvenile Idiopathic Arthritis. J. Biomech. 85, 27–36 (2019)

    Article  Google Scholar 

  17. Apkarian, J., Naumann, S., Cairns, B.: A three-dimensional kinematic and dynamic model of the lower limb. J. Biomech. 22, 143–155 (1989)

    Article  Google Scholar 

  18. Zuk, M., Syczewska, M., Pezowicz, C.: Influence of uncertainty in selected musculoskeletal model parameters on muscle forces estimated in inverse dynamics-based static optimization and hybrid approach. J. Biomech. Eng. 140, 121001 (2018)

    Article  Google Scholar 

  19. Sancisi, N., Parenti-Castelli, V.: A 1-Dof parallel spherical wrist for the modelling of the knee passive motion. Mech. Mach. Theory 45, 658–665 (2010)

    Article  Google Scholar 

  20. Moeinzadeh, M.H., Engin, A.E., Akkas, N.: Two- dimensional dynamic modeling of human knee joint. J. Biomech. 316, 253–264 (1983)

    Article  Google Scholar 

  21. Abdel-Rahman, E., Hefzy, M.S.: A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115, 357–365 (1993)

    Article  Google Scholar 

  22. Caruntu, D.I., Hefzy, M.S.: 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints. J. Biomech. Eng. 126, 44 (2004)

    Article  Google Scholar 

  23. Blankevoort, L., Huiskes, R.: Ligament-bone interaction in a three-dimensional model of the knee. J. Biomech. Eng. 113, 263–269 (1991)

    Article  Google Scholar 

  24. Machado, M., Flores, P., Ambrosio, J., Completo, A.: Influence of the contact model on the dynamic response of the human knee joint. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 225, 344–358 (2011)

    Google Scholar 

  25. Crowninshield, R., Pope, M.H., Johnson, R.J.: An analytical model of the knee. J. Biomech. 9, 397–405 (1979)

    Article  Google Scholar 

  26. Zheng, N., Fleisig, G.S., Escamilla, R.F., Barrentine, S.W.: An analytical model of the knee for estimation of internal forces during exercise. J. Biomech. 31, 963–967 (1998)

    Article  Google Scholar 

  27. Ciszkiewicz, A., Lorkowski, J., Milewski, G.: A novel planning solution for semi-autonomous aspiration of Baker’s cysts. Int. J. Med. Robot. e1882 (2018)

    Google Scholar 

  28. Hertz, H.: On the contact of solids—on the contact of rigid elastic solids and on hardness. In: Miscellaneous Papers, pp. 146–183. Macmillan, London (1896)

    Google Scholar 

  29. Galvin, C.R., Perriman, D.M., Newman, P.M., Lynch, J.T., Smith, P.N., Scarvell, J.M.: Squatting, lunging and kneeling provided similar kinematic profiles in healthy knees—a systematic review and meta-analysis of the literature on deep knee flexion kinematics. Knee 25, 514–530 (2018)

    Article  Google Scholar 

  30. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011)

    Article  Google Scholar 

  31. Skorupa, A., Skorupa, M.: Wytrzymałość materiałów: wybrane zagadanienia dla mechaników. Wydawnictwo AGH, Kraków (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ciszkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gałuszka, J., Ciszkiewicz, A. (2020). A Workspace Analysis for a Planar Model of a Tibiofemoral Joint - A Preliminary Study. In: Korbicz, J., Maniewski, R., Patan, K., Kowal, M. (eds) Current Trends in Biomedical Engineering and Bioimages Analysis. PCBEE 2019. Advances in Intelligent Systems and Computing, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-030-29885-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29885-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29884-5

  • Online ISBN: 978-3-030-29885-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics